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[ FORWARD

This survey attempts to make a critical study of methods described

in the literature for the analysis of metal structures under dynamic loads

Sleading to plastic deformations.

Analyses have now appeared in the literature of a considerable

variety of structures of engineering interest. They include bealms (under many

Sconditions of loading, support, and materials), rings, arches, frames (simple

rectangular bents), plates (circular and rectangular), membranes (i.e. plates

with deflections greatly exceeding the thickness), and shells (axially sym-

metric loading on cylinders, spheres, and spherical caps). Most of these

have been obtained by a rigid-plastic type of analysis (in which strain rates

-- are assumed zero unless a yield condition is satisfied). A few have been

"obtained by wholly numerical approaches of finite difference type.

Experiments reported in the literature have in most cases shown that

the actual permanent deflections are smaller than those predicted on the basis

* of plastic properties determined by quasi-static tests, the predictions often

being in error by as much as 100 percent ur more for mild steel, with smaller

discrepancies for other metals, such as aluminum alloys or high strength steels.

"Strengthening under conditions of rapid straining has been considered the prin-

cipal cause of such discrepancies; when it has been possible to modify the

analysis to take account of tne increase of yield and flow stresses at high

strain rates, much better agreement has in most cases been obtained.

The mathematical approaches have depended heavily on assumptions.

*" This is obviously true of analytical solutions such as rigid-plastic analysis.
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It is also true, to a lesser extent, of the wholly numerical solutions; for

example the "MIT method" (see Witmer et al (1963), (1967)* ) depends on a

parallel rod model of a beam or plate. Although "agreement" has often been

obtained, it also has often been the case that only one or two tests were made

for purposes L,: comparison. It is difficult to draw general conclusions

unless the tests form a comprehensive series.

A plate or shell deforming plastically due to impact or shock load-

ing behaves in an extremely romplex manner which is difficult to analyze even

if the laws of plasticity established for quasi-static conditions are exactly

obeyed. Analytical solutions are out of the question except by rigid-plastic

methods; when elastic deformations are included the solution of partial dif-

ferential equations with moving boundaries is required, and in addition the

equations become nonlinear if finite deflections must be considered, as is

commonly the case. The fact that dynamic plastic properties are greatly dif-

ferent from those determined statically, for steel and some other important

structural metals, increases the fundamental difficulty by orders of magni-

tude. Very little is known about dynamic plastic behavior except for uniaxial

stress states and pure torsion. Extensions of such standard concepts of static

plasticity as yield surfaces and flow rules (either in terms of stresses or

of stress resultants) to conditions of rapid and variable straining have not

been investigated. Mathematical solutions in the literature using such con-

cepts whether by analytical or numerical means are speculative, and the re-

sults must be considered suspect.

* References are listed alphabetically in the Bibliography at the end of the I.

report.



The present survey is limited to studies in some depth of analytical

methods and experimental investigations on beams. This limitation is deliber-

ate and believed justifiable, in view of the present absence of knowledge,

concerning laws of dynamic plasticity for complex stress states. A beam

exhibits most of the major sources of complexity arising from mixed elastic

and plastic behavior at large deflections. However the stress and strain

states are relatively simple, apart from the possible influence of strain

gradients. Thus the interactions between dynamic plastic stress resultants

in a beam are relatively tractable. Also, and most important, for beams there

are several published experimental investigations that are quite extensive and

comprehensive. These make it feasible to carry out detailed analyses and inter-

pretations of the test results, and thus to attempt to gain understanding of

the basic processes and mechanisms.

It seems apparent to the writer that such basic understanding must

first be reached for beams. There will then be a good chance of gaining it

for general deformations of plates, membranes, shells, and other structures.

There are two important areas of dynamic plastic structural analysis,

which have been developed in recent years, which have had to be treated in-

adequately in the survey. One is the area of numerical solutions by finite

differences or finite elements. The other area is undoubtedly the major theo-

retical achievement in the subject in recent years, namely the development by

Martin of energy techniques which furnish bounds on displacements and duration

times (see Martin 1964, 1965, 1966). The study of the application of these

methods and of the related mode approximation technique to analysis and design

] must be dealt with separately. These new methods promise to make possible

the treatment in a simple but realistic way of complex structures under anyI
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impulsive and perhaps more general clAsses of loading.
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Chapter I

MATERIAL PROPERTIES

1. Constitutive Laws. In analyses of structures deforming plastically under

dynamic loads one must use appropriate constitutive laws. i.e. mathematical

formulations of the essential features of behavior relating stress and strain

tensors and their time derivatives.

The laws of plastic behavior of metals are generally defined as

relations that are homogeneous in time; thus the material behavior involves

no influence of times or rates. In fact, in structural metals rate effects

may be of great importance, but we postpone discussion of them until a later

section of this chapter. With this understanding, the main features of

plastic behavior of structural metals are sketched in Figs. I l(a), I l(b),

and summarized as follows:

(1) An elastic range governed by a yield stress or other yield

conditions appropriate to the stress state.

(2) Plastic deformation with work hardening, governed by flow

rules and loading conditions for three dimensional stress states.

(3) Irreversibility; unloading occurs elastically, leaving

residual stresses and permanent (plastic) strains.

(4) Bauschinger effect; a reversal of loading after plastic

deformations have occurred leads to plastic deformations in the reversed sense

at lower stress magnitudes than those at which the previous plastic flow

occurred.

In this review we shall be concerned with structures such as beams

and plates where the state of stress is described by means of stress resultants

such as bending moments and axial forces. The laws of plasticity concern

relations between stress resultants and generalized strains such as curvature

and strain at the center-line. They are derivable in general by calculation



from the stress-strain curve for simple tension or compression specimens

together with yield conditions such as those of Tresca aud von Mises. it is

common to assume that plane sections remain plane.

2. Idealizations. Idealizations of plastic (time independent) behavior
I

are tssential to make analyses of plastic deformations tractable, in static

4 - and much more so in dynamic problems. Hence the bilinear stress-strain curve

of Figs. I(c) is often used for elastic-plastic behavior; here the stress-

strain relation has slope L in the plastic range a > a for initial load-
p y

ing, while Young's modulus E 3overns elastic behavior. Further idealizations

are indicated in Fig. I1(d). Here the solid curve represents two drastic

but often satisfactory idealizations: (1) the elastic modulus E is taken

as infinite; and (2) the plastic slope E is taken as zero. The hypothetical
p

material behav-r is referred to as rigid-perfectly plastic. It is common

to apply this type of analysis to static problems where plastic strain

components greatly exceed elastic strains, and the material is very ductile.

"* As will be discussed in detail in the review, the use of rigid-perfectly

plastic analysis in dynamic structural problems makes for a very great

simplification, so that it deserves careful study to determine the range of

its validity.

For some problems strain hardening cannot be neglected. The

idealized rigid-plastic material with work hardening is shown in Fig. I 1(d).

In structural problems the need to consider strain hardening may arise not

so much because strain hardening is large, but because some physical feature

of the actual response disappears when perfectly plastic behavior is assumed.

For example, in beams under either static or dynamic loading, large plastic

deformations occur at plastic hinges. In the real structure these are short

Ii
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regions (of the order of the beam depth) where intensive plastic flow occurs.

if perfectly plastic behavior is assumed, the plastic hinge is a point on

the beam center-line. The eependence of the size of the plastic hinge on the

loads and on time can only be studied if the material is taken to have a

finite degree of strain hardening. Another example is that of impact on the

end of a long thin rod, when the impact is severe enough to produce stresses

above the elastic yield stress o . If the material is assumed to have ay

perfectly plastic behavior, there is no propagation of plastic stress and

strain waves away from the impact end, and an infinitesimal segment of

the rod at the struck end acquires infinite strains.

The point of these remarks is to emphasize that the neglect of

strain hardening may be permissible in one problem but quite unrealistic

in another, in each case involving the same material. In the beam problem,

unless o-a wishes specifically to study the plastic zones (finite in a real

structure) it may well be a good approximation to treat the material as

perfectly plastic. but in the rod impact problem such a treatment does not

lead to results of physical significance.

3. Idealized moment-curvature relations. As idealized bending moment-

curvature characteristic for a given beam section can be derived, as mentioned,

from the stress-strain diagram for simple tension and compression plus the

Bernoulli-Euler assumption that plane sections remain plane. As an example,

corresponding to the bilinear stress-strain law of Fig. I l(c), one obtains

a moment-curvature relation for a rectangular cross-section given by tlhe

following equations:

M < M M LEIK, or R-- = - (3.la)

y y

Y Y

| | | | | | | | | | •I
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where

y hE

"M 21 bh2

y y hy 6 y

"b = width of cross-section

h = depth of cross-sec- ion

The idealization of the moment-curvature relation to two straight

dMlines, one of elastic slope -I El, and the other witi, slope E I, is

comnonly made. The initial elastic line can be taken with good accuracy as
M

extending to M r M = aM , where a -2,is the shape factor, the ratio of
p

yfully plastic moment to yield moment. For the rectangular section a = 3/2,

while for I-sections bent about the major axis a is about 1.15. Thus for

this approximation the bilinear moment-curvature idealization car, be written

M K o K
M < M or = - o -- = - (3.2a)
-p y y p p

E
M > M + I + L- (3.21)

- p m E Kp p

where M Z am ; K = LK .

Figure 1 3 shows the moment curve derived from the bilinear stress curve,

and the bilinear approximation for the moment curve. It is evident that the

significant quantities for treating problems of bending are the iuilly

plastic moment Mp and the slope Ep I in the work hardening range. The rigid-

plastic moment-curvature idealizations are indicated in Fig. 12(c), where

4 the solid curve represents perfectly plastic and the broken curve linearly

work hardening behavior.

L



As indicated in Figs. 12(b) and 12(c), it is simplest to take

3 the elastic range, for reversed loading, as 2M . There is little experimental
p

justification for this, since phenomena involving reversed loading in bending

have not had much attention despite the fact that in dynamic problems

there are many cases where large bending moments of reversed direction occur

and lead to reversed plastic deformation, under a unidirectional main load-

ing. There are other uncertainties, for example concerning rate effects,

which make it difficult to assess the experimental evidence concerning

the Bauschinger effect in dynamic problems, at this time.

Lk Plastic interactions. It has been mentioned that interactions between

stress resultants in the plastic range must be considered in many structural

problems. In later sections of this review more details will be given con-

cerning recent work in constructing theoretical interaction curves, and

solutions and experiments involving interactions. Here we will merely

illustrate the problem.

The two most important interactions in beam problems are those

between bending moment and axial force (M,N) and between bending moment

and shearing force, (M,Q). Representative interaction curves of these

types are shown in rigs. I 2(d) and I 2(e), in terms of ratios involving

the limiting plastic values of bending moment M . axial force N . and

shearing force Q . These curves correspond to stress-strain behavior of

perfectly plastic type, and are derived theoretically from concepts of

limit analysis. Thus, no plastic deformation is supposed to occur for

points inside the curves., while unrestricted flow can occur for points on

the curves. Curves A in Figs I 2(d) and I 2(e) are for rectangular

cross-sections. Curve B in Fig. I 2(d) is for the limiting I-beam
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7or sandwich bean, which has negligibeI web area and flanges of finite area

j but negligiblt; thickness. Curves for real I-sections lie between a and B.

The shear interaction curve marked B' in Fig. I 2(e) is for a typical wide-

flange I-section. The steeply falling portion of curve B' corresponds to

reaching the limiting force in shear of the web alone, and this marks, for

practical purposes in a problem of moment-shear interaction, the maximum

shearing force that can be carried by the section.

Further details concerning these curves, including the correspond-

ing relations governing deformations, will be given in the sections dealing

with problems requiring them. It should be emphasized that they are

- .•theoretical, not experimental curves. Experimental evidence confirming

them directly is very meagre for static problems, and almost non-existent

fox- dynamic problems. Dynamic experiments have been performed giving some

indirect evidence on their validity (Nonaka, 1964), and these will be

reviewed in a later section. It can be said here that the use of inter-

action curves based on static plasticity behavior has useful suggestive

value, indicating potential deformation patterns and magnitudes. However

the details of such interaction curves, at least tor dynamic problems of

some common structural metpls, are highly questionable because of their

neglect of strain rate sensitivity. Rate effects have been studied fairly

.. extensively for simple stress states, but knowledge of rate sensitivity

-. in complex stress states is almost entirely conjectural.

"In problems of plates and shells further interaction relations

must be used, especially between bending moments and axial forces, which

] can be depicted as surfaces in an appropriate stress space. Techniques for

establishing these and the corresponding displacement relationships have

I

|4
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been described in the iteratur.e. The remarks about experiments and rate

effects apply to these.

5. Strain rate effects on yield stress. The most important difficulty in

the way of solving problems of plastic deformation of structures under

dynamic loading comes from the fact that the material behavior is not that

of conventional plasticity theory. Even at the moderate strain rates in

most structural problems (usually not exceeding about 100 per second) many

structural metals have substantially different stress-strain characteristics

than they exhibit in quasi-static tests.

The simplest way of depicting this so-called "strain-rate sensitivity"

is by families of curves showing either stress versus strain at constant strain

rate magnitudes, or stress versus strain rate at constant strain levels. Such

curves have been obtained by experiments using techniques which vary in detail

but in general involve impact on a short specimen - a rod or tube with length

and diameter of comparable size - with one end constrained. Measurements are

made of stress at one or both ends of the specimen and of strain and strain

rate across the specimen length. Determinations of this sort are direct in

the sense that it is not necessary to postulate a theory of plastic wave

propagation in order to interpret the test data. However they are subject to

the criticism that they determine averages of stress, strain, and strain rate

over the specimen length, and because of propagation effects it is possible

for these quantities to vary widely over this length. A further criticism is

made that in impact tests on cylindrical specimens there is initially a three-

dimensional stress and strain state at the impacted surface, rather than the

uniaxial stress state of static tests; it has therefore been argued by Bell

j (see Bell, 1963, for example) that an apparent strain rate sensitivity in such

I.

L
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tests is not a material property but a purely geometrical result associated

1 with elastic dilatation waves first excited by plane impact on the end of

the specimen. Such phenomena are undoubtedly critical in very short time,

high velocity tests, but while the geometrical effects are certainly always

r present it seems unlikely that they play an important role in tests at strain
rates up to about 100 sec 1 , which are concerned in structural problems. One

1 indication that the strain rate effects are real physical properties isr their strong dependence on the condition of the metal; changes in heat

treatment or alloy content produce large changes in the strain rate properties.

F A second indication is that the use of radically different techniques

furnishes similar results; for example tests in which a ring specimen is

expanded by an explorive pressure (see Johnson, Stein and Davis, 1963) or in

which torsion or shear impact (for example D. B. C. Taylor and Tadros, 1956)

are applied lead to increases in yield stresses close to those measured in

� tension or compression impact tests.

Here we give illustrations of strain rate dependence for mild

* steel and a few other structural metals. These are shown to indicate the

magnitude of the changes in yield stress at moderate strain rates. Later

in this survey a review of test results on beam specimens is given, and

the analysis of plastic deformations of beams of strain rate sensitive

materials is discussed. These problems require knowledge of strain-rate

dependence of flexural properties. Recently direct measurements have been

made of these (Aspden and Campbell, 1966). We defer discussion of these1

I until later.

Figure I 4 shows a plot for mild steel of stress as a function

of both strain E and strain rate i, by means of an isometric projection

Sdiagram. This was published by Marsh and Campbell (1963). This plot shows

ITi



dramatically how, for a mild steel of given composition and treatm(nt,

sujce3oaceti yeo test, theste-tricuvchnsin.f

position and shape as the strain rate is increased. Three aspects of

such "dynamic stress-strain curves" are of interest:

J(a) In the initial portion of the curve the stress rises k

elastically to an upper yield stress and then falls abruptly to a lower

value, as plastic straining increases rapidly. The upper yield stress

is a function of the strain rate in the elastic range, and is associated

with the phenomenon of yield delay time; but both are of less interest

� than other features of the dynamic curve, for our purposes. Their

significance for structural problems will be discussed in the following 4

section 1.6.

(b) Plastic straining occurs at a nearly constant stress termed

the lower yield stress. This stress magnitude and its dependence on strain

rate are of primary importance in analyzing plastic deformations of structures

under dynamic loading.

(c) The lower yield "plateau" terminates at a strain that depends

on the strain rate, and is followed by a strain hardening region. The

slopes of the stress-strain curves at various strain rates do not differ

greatly from each other and from the slope of the static stress-strain

curve, in this region.

It is seen that the dynamic stress-strain curves do not retain

the same shape as the static curve (see Figs. I 5(a), T 5(b), I 5(c).

Fortunately, in the applications the lower yield stress is of main

importance, and it is not necessary to try to express mathematically the

obviously complex features of the dynamic stress-strain curves.

Although the three-dimensional representation of stress, strain and

' H
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strain rate is of great interest, it should be accompanied by warnings. InwI
the first place, it may give the impression that a metal has an equation

* of state, i.e. that a single functional relation holds between a, c, and i.

No such relation can strictly be expected to exist, for a metal deforming

plastically. It must be presumed that the plastic flow stress is a function

not only of the current strain and strain-rate, but of the previous history

of straining. If the effect of history is very strong, different diagrams

would be obtained by different test methods. Fortunately for practical

applicetions, however, it has been found that two quite different types of

tests lead to closely similar diagrams. This question was studied by

Marsh and Campbell (1963), who found in fact that tests imposing (a) a pulse

* •of constant stress and (b) a nearly constant rate of strain led to diagrams

of stress versus strain at constant strain rate with fairly good agreement

as to both magnitudes and shapes. Some of these results are shown in
Fig. 15(c), where stress-strain curves constructed from "constant stress"

and "damped dynamic" (=constant strain rate) tests are compared.

Presuming that as a practical approximation one can make use of a

functional relation f(c. E, ,N) r 0, onc must still expect that strain rate

sensitive plastic beiavior of mild steel, for example, will depend on the

chemical constitution and on the prior heat treatment. It is important to

have an idea of the quantitative importance of these influences. Marsh and

Campbell (1963) investigated the effects of changing grain size, as shown

- - by comparison of figs. 1 5(a), 1 5(b), and I 5(c). Later work of Aspden

and Campbell (1966) used a different but similar mild steel, and although

"the apparatus was basically the same as in the earlier experiments, improved

the technique for measuring strain and strain rate during a test. Figures

SI 5(d) and I5(e) from Aspden and Campbell (1966) maY 1)c compared with the

I1
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"colstant stress" test results, Figs. I 5(b) and I 5(c).

'I Figures 16 and 17 show further indications of variations in I
strain rate sensitivity to be expected with different mild steels and

testing methods. We shall not attempt to analyze the difference in reported

strain rate behavior, but will merely indicate their magnitude. As a

measure of strain rate sensitivity we plot o'/o where a is the lower
y y y

yield stress in a static test and o' the same quantity at a specifiedy

strain rate. In Fig. I 6 we have plotted this ratio as reported by

eleven laboratories over a period of time from 1938 to 1964, This plot

is not intended as a complete summary; other references can be found for

example in the book by Goldsmith (1960). The collection of results in
a

Fig. I 6 shows good agreement for most of the results at strain rates below

about 100 secl. The data of Manjoine (1944) cover a wide range of strain

rate and are representative of the more recently obtained results. They

have been used in analyses to interpret bending impact tests, and will be

discussed later; recent data of Aspden and Campbell (1966) on strain rate

sensitivity in flexure tests will also be referred to in that connection.

Massard and Collins (1958) gave results for twelve structural

steels, including low carbon plate or bar stock in various treatments

("rimmed," "semi-killed," "fully killed," "annealed," etc.), some low

alloy steels, and a nickel chromium steel. Their results are of interest

in showing that substantial differences in strain rate sensitivity are

reported even between steels of very similar chemical composition and static

yield strength. A few of Massard and Collins' tabulated results are plotted

in Fig. 17. Of all the carbon steels tested by Massard and Collins those

designated 2SRBA and K showed the greatest and least strain rate sensitivity,

respectively. The only "low alloy" steel for which strain rate data areI
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given is that designated Q; this has a static yield stress considerably

higher than that of the low carbon steels, and the rate sensitivity curve

lies below all the curves for the carbon steels.

It is striking that the curves for a single material - a semi-killed

steel - with specimens cut parallel to the direction of rolling in one case,

and transverse to it in the other - show differences as large as those between

many of the low carbon steels and the low alloy steel designated as Q.

Directional properties could arise from processes of fabrication of a welded

structure, as well as from manufacturing processes. Their effects on plastic

rate-sensitivity have not been investigated.

We give next some indication of what is known about strain rate

sensitivity in steels of higher strength than mild steel. Higher strength

! •carbon and alloy steels have received very little systematic investigation

in regard to their strain-rate behavior. Some tests in this category are

listed below. In all cases either a lower yield stress or a stress at a

strain of roughly 0.01 is considered:

(a) Cold rolled steel (SAE 1020 or similar)

Sraith, Pardue, and Vigness (1955) reported tests on a steel

of static yield strength about 84 ksi at strain rates of

about 10 sec 1 , and found a negligible change of the yield

stress (at a strain of about 0.01). Steidel and Makerov

(1960) observed an increase of yield strength of about 20
-i

percent at a strain rate of 100 sec ; their steel had a

static yield stress about 80 ksi.

(b) Low alloy carbon steel:

The report of Massard and Collins (1958) includes the ASTM

A-242 steel designated Q in Fig. I 7 (static yield strength

!1
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Ii 50 ksij, with 0,19% C, 1.10% Mn), and a few others of this

type. The Q steel, as indicated in Fig. I 7, has a

dynamic yield strength ratio of about 1.4 at strain rates t i
-1

about 10 sec . A few other low alloy steels tested by

Massard and Collins apparently had strain rate sensitivity 2

too small to be determined by their technique. Baron (1956)

found for an En 12 steel (a hardened and tempered steel of

0.34% C, 0.82% Mn, static yield stress about 74 ksi) a

dynamic yield strength ratio of about 1.25 at strain rate

about 80 sec-
1 .

Clark and Duwez (1950), using their tubular specimens sub-

jected to circumferential stress due to internal pressure,

J tested a carbon-manganese steel (0.12 - 0.17% C, 1.25% Mn,

with yield strength 55 ksi), and reported dynamic yield

I strength ratio averaging about 1.2, at strain rates of

-1
approximately 40 sec

(c) Nickel-chromium steels:

Several investigators have tested various nickel-chromium

alloy steels and found either no strain rate sensitivity

or a very small effect (less than 10 percent increase of

yield stress), at strain rates up to about 100 sec

Among these investigators are Brown and Vincent (1941),

Clark and Duwez (19509), (1956), and lassard and

Collins (1958). Smith, Pardue, and Vigness (1955) found

an increase of about 15 percent in te~ts on SAL 4340 steel

(0.84% cr, 1.64% Ni, with static yield stress about 210 ksi).

However, the same investigators observed a relatively large

I
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i -14-r effect in SAL 4,40 steel (1.066 C,, 0.12% Ni, O."'q

0.21% Mo. 0.89% Mn, with static yield strength about 102

ksi), finding for this material a dynamic yield stress

ratio of over 1.6. Finally, we may note that although

no rate effect was found by Brown and Vincent (19l41),tlhe

same nickel-chromium steel tested by Whiffin (1948), using

the projectile compression technique devised by G. I.

Taylor (1948), showed a dynamic strength rate ratio of nearly

1.8 at the very high strain rates (estimated at 15,000

secaI ) of the projectile tests. This was a steel of

= 3.55% Ni, 0.47% Cr, with static yield stress about 110 ksi.

Similarly, for "Viurar" steel (4.05% Ni, 1.23% Cr, 0.28% Mo)

the projectile impact test conducted by Whiffin showed a

dynamic stress ratio of about 1.6, while previous work by

Brown and Vincent (1941) showed no measurable increase at

strain rates up to 855 sec- The Taylor type test has the

hi-hest strain rates yet reported in (nominal) plane stress.

The projectile impact tests involve serious difficulties

of interpretation, and the assigned strain rate figure

(16,500 secJ1 in these tests) is only a guess; however,

an independent confirmation of the dynamic ratio for this

material at very high strain rates was given by Costello

(1957) using a plane impact wave technique.

Finally, references and remarks on non-ferrous metals will be given

to complete the general picture concerning test data on rate sensitivity.

Pure aluminum has received a great deal of attention, and curves

"* of dynamic stress versus strain or strain rate are reasonably well accepted
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for annealed pure al-lmium; review papers of Malvern (1965) and Lindholm

(1965) may be consulted for these. Hauser, Simmons, and Darn (1961), and

Karnes and Ripperger (1966) have given similar curves for pure aluminum after

prestraining. These tests are all in more or less complete disagreement

with those of Bell (see Bell, 19N6 , for a brief review). The discrepancies

are far from completely understood. Bell's te~sts over many years have

concerned propagation phenomena in relatively long rods. He presents results

that agree with rate-independent plastic wave theory, and hence are difficult

to reconcile with dynamic st-ess-strain curves showing strain rate dependence.

This may mean that wave phenomena are governed effectively by shapes rather

than by magnitudes of stress-strain curves, and that there is in effect a

"dynamic stress-strain curve" which somehow dominates the wave propagation

problem, and which has a shape not greatly differing from that of the curve

measured statically. This is certainly not a satisfactory or complete

explanation, and others have been advanced; see, for example, Bell and Stein

(1962) and Karnes and Ripperger (1966). Since our interest is in structural

rather than pure metals, we shall not pursue this further. Obviously the

disagreements are basic to the subject, and their explanation would be

pertinent to investigations of other metals.

Tests on the dynamic plastic behavior of the structural aluminum

alloys have been reported by a considerable number of investigators. In

general, the alloys of higher static strength have smaller strain rate

sensitivity. This trend has been particula-.Ly clearly shown by very recent

tests of Green, Maiden, and Babcock (1966). They found, for example, that

3 •6061-T6 in a fully strengthened condition had no measurable strain rate

effect, but that in an annealed condition, and at higher temperatures, sub-

stantial rate sensitivity was determined. However, the evidence concerning

--1
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i 6061-T6 is not without contradictions. Hoge (1965) recently published test

results showting a ratio of dynamic yteld strength to static of over 20

percent at a s•train rate of about 100 sec-I Earlier. work includes similar

Scontradictory reports on 6061-T6; Majsard and Collins (1958) could find no

rate sensitivity, but Ripperger and Turnbow (1959) reported an increase of

yield stress proportional to the strain rate, with a rise of approximately

10 percent at 1000 sect ,, Steidel and Makerov (1960) gave results for a

number, of aluminum alloys: 5154-0, 5456-0, 6061-0, 6061-T6, 7075-0, and

7075-T6, making tests at strain rates up to about 100 sec- . Unlike Green

et al. they found 6061 to have no rate dependence in either the 0 or T6

condition; but 7075 was shown to exhibit about the same increase in yield

stress in both 0 and T6 conditions,

The observed differences in strain rate sensitivity of 6061-T6 might

well be ascribed to differences in heat treatment or aging, although the

negative results just quoted of Steidel and Makerov (1960) contradict this

explanation. Clearly differences in technique may be responsible for part

of the discrepancies. In any case these are small effects (compared to

mild steel).

Finally, Steidel and Makerov (1960) gave results for a series of

titanium alloys, linding rate sensitivity of about 3.80 for alloy RS-55

(with static yield otress 43 ksi), of 1,30 for alloy RS-IIOB (static yield

120 ksi), and negligible rate dependence for the strongest alloy tested,

namely RS-130 (static yield stress 146 ksi).

To sum up, this brief review of data concerning strain rate

dependence of behavior in the plastic range of metals may suffice to show

the magnitude of the effects in metals of structural interest, and at the

same time some of the uncertainties in knowledge about this behavior. T1-
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lower yield stress of mild steel is substantially raised: strain rates I1 -ecl -ecl •
in the range 10 sec to 100 sec can lead to an increase of 100 percent

Jover the static value (Fig. 16). But there is no unique curve for "low 3 1,

carbon steel"; Fig. 17 shows variations of 25 percent between steels of

approximately the same static strength, at a strain rate of 10 sec-

Higher strength carbon and alloy steels show in general much less rate

sensitivity than mild steel, but yield stress increases (20 to 40 percent)

have been reported for steels of 50 - 60 ksi static yield. Structural

aluminum alloys also have much less rate sensitivity, and although yield

stress increases of 25 percent have been reported, these are not consist-

ently found; the discrepancies reflect differences both in condition of

the metal and in methods of testing. Some other structural metals and

alloys, notably those of titanium, exhibit rate effects comparable to those - I
of mild steel.

6. Yield delay time. The property of yield delay time, exhibited by mild

steel and some other metals, consists in a delay in the development Gf

plastic strains when the specimen is subjected to stresses above the static

(upper) yield stress. This phenomenon was noticed in very early investi-

gations (B. Hopkinson, 1904), but was first studied systematically by

Clark and Wood (1949). It has had much experimental and theoretical study

since then (see, for example, Campbell and Marsh, 1962, and Krafft and

Sullivan, 1959). The simplest case is that in which a pulse of stress is

very rapidly applied and maintained constant. The observed delay time is a

function of the excess stress applied above the static upper yield; for

stressr- low the static upper yield magnitude the delay time is indeterminate.

It is 1. that a plot of the excess stress against the logarithm of the

J
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delay time is close to a straight line, although a log-log plot gives a

more linear relationship at small times.

If the loading is not a simple step pulse it is possible to

compute an equivalent delay time by an assumption of proportional damage

accumulation. This was done by Vigness, Krafft, and Smith (1957), with

Sthe results shown in rig. i a Experiments cmploying constant I ad,

constant rate of increase of load, and oscillatory loading were used, and

the data determine a straight line in the semi-log plot, within the limits

of experimental accuracy.

Examples of stress-strain curves at constant strain rate for

mild steel have already been given in the isometric projection diagram of

Fig. 14 (Marsh and Campbell, 1963). These tests show a marked enhancement

of the upper yield stress as the strain rate is increased; the upper yield

stress is increased more rapidly than the lower yield stress. This

enhancement is shown in the curves of Figs. I 5(a)-(c), from Marsh and

Campbell (1963), and more strongly in those of Fig. I 5(d) from Aspden and

Campbell, (1966). The comparison of the two sets of curves is of interest

in showirzg details determined by improvements in instrumentation, using

essentially the same impact apparatus, and similar steels. The connection

between yield delay time and upper yield stress has been recognized; see,

for example, the discussion of Krafft and Sullivan (1959).

The yield delay time and enhanced upper yield stress, as observed

in laboratory impacT tests of mild steel, would appear at first glance to

be highly significant for applications of analytical approaches to the plastic

deformation of engineering structures. Clearly the transition from wholly

elastic response to one with a mixture of elastic and plastic deformation

might be strongly affected by such properties as yield delay time and increased
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upper yield stress, and analytical predictions of plastic deformations

Ii which ignored these effects could bc nonsense. Keil (1960) has discussed

f the inclusion of yicld delay time in studies of dynamic loading of

structures.

In practical structures, however, the phenomena of yield delay

time and raised upper yield stress may be less important than the labora-

tory results discussed above would indicate. These quantities are observed

in laboratory experiments in which much care is taken to eliminate stress

concentrations and eccentricity of loading. It was noted by Belsheim (1954),

among others, that the yield delay time and upper yield stress disappeared

when a specimen inadvertently had a surface flaw or scratch. The sensiti-

vity of the upper yield stress to these conditions has been well known in

static tests. The observed enhancement of upper yield stresses in impact

tests may mean a decreased sensitivity to eccentricity of loading in impact.

In any event, in real structures various kinds of stress raisers are almost

inevitable, and yield delay times and upper yield stresses may rarely be

encountered. Hence it is conservative and realistic to ignore them in

The lower yield stress, on the other hand, has no such

sensitivity to axiality of loading and absence of stress concentrations,

and its dependence on strain rate clearly appears in practical engineering

structures as well as in laboratory specimens. Its consideration as a

factor in design is therefore justified. Consid'ýrable attention will be

given in this review to evidences of rate sensitivity in experiments on

beams, and to methods of including this behavior in analyses.

I
I



Figure Captions for Chapter I

Figure Caption

I 1 Forms of nominal stress-strain diagrams: (a) _ •b)
as measured for structural metals; (1,) and (c) arer idealizations.

I 2 Moment-curvature and interaction diagrams for beams:
(a) shows representative measured moment-curvature dia-
grams, (b) and (c) idealized moment-curvature diagrams;
(c) rigid-perfectly plastic. (d) shows interaction be-
tween bending moment and axial force: curve A for a
rectangle, curve B for a sandwich beam. (e) shows inter-
action between bending moment and shear force (limit load
curves for end-loaded cantilever): curve A for rectangle,
curve B' for I section, where 0w is limit shear force for
web area.

- I 3 Bilinear nominal stress-strain diagram and corresponding
moment-curvature diagram (full curves); approximating
bilinear moment-curvature diagram (dashed curve).

I 4 Stress-strain-strain rate diagram for mild steel shown as
isometric projection (from Marsh and Campbell, 1963);
"constant stress" type tests, strain rates up to 20 secT Stress and strains are compressive, nominal values.

I 5 Comparison of results of compression strain rate tests of
- mild steel: (a) - (c) from Marsh and Campbell (1963);

(d), (e) from Aspden and Campbell (1966).

(a) Series E: "constant strain rate" tests, steel with
mean grain density 2033 grains per mm2 .

(b) Series C: "constant stress" tests, 2033 frains ner mm 2

(c) Series b: "constant stress" tests, 773 Rrains per mm 2

(d) Curves of typical "constant stress" tvpe test of Aspden
and Campbell (1366).

(e) Families of stress-strain curves 2at various rates, mean
"grain density 2300 grains per mm , for comparison with
(b), showing changes with different mild steel, details
of test technique.

1 6 Representative data on strain rate dependence of lower yield
stress of mild steel: o 'c/ = ratio of dynamic to stdtic
lower yield stress. Tests oY Marsh and Campbell (1963),
Aspden and Campbell (1966), and Whiffin (194B) in compres-
sion; all others in tension; Clark and Duwez (1950) used
circumferential tension in cylinder with internal pressure.

I
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t Figure Capt ionI

1 7 From Massard and Collins (1950): examples of yield stress
dependence on strain rate for several structural steels.

SI 8 From Vigness, Krafft, and Smith (1958): increase of upper
yield stress over static upper yield stres3 as function of
delay time (computed by intepration so as to give the equiva-
lent of constant-load test.)

Points marked o for constant load test.

Points marked + for uniformly increasing load.

Points marked A for combined constant and oscillatory load.
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Chapter ii

BEAMS - ANALYTICAL METHODS

I. Basic Ideas

A beam is the simplest prototype of the general continuous engineering

structure. Here "beam" means a body, one of whose dimensions is large compared to the

maximum transverse dimension. The simplest case is a straight bar of uniform cross-

section. This is by definition a "beam" if the loads are mainly transverse to the ]onp

axis.

A beam is a three-dimensional body, but a treatment must be given in terms

of stress resultants: bending moments M, shear forces Q, axial force N and torque

T; arising from normal and shear stresses acting on a cross-section plane. Effects of

'* transve-rse normal stresses are generally ignored. It is convenient to use principal

axes and to separate general loads into components parallel to principal planes.

The material properties of the beam, originally given by a yield functiorn

and stress-strain relations describing the elastic and plastic behavior, are trans-

lated into corresponding terms involving the stress resultants. In the simplest case

of transverse loading only one bending moment M must be considered, so that a

diagram of M as function of curvature K takes the place of the simple tension-

compression stress-strain diagram, as in Figs. T2, 13. This exhibits an elastic range

with slope El, a yield moment My, and a strain-hardening curve. For certain highly

ductile structural metals it is a good and conservative approximation to replace the

rising part of the curve by a horizontal line at a magnitude MN; this constant

moment magnitude represents the limit moment or fully plastic moment of the methods

of plastic design of beams. As indicated in Sections 5 and 6 of Chapter I, most

structural metals have different plastic behavior at high strain rates than they do

under static conditions, and this is reflected in the M -- x curve, which now depends

J •_

I
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on the curvature rate •.

S ~Even if the loads are parallel to one principal plane, it may not be

permissible to disregard the shear force and normal force in the plastic behavior. I
There is in general loading always an interaction between M, Q, and N, but the

importance of taking account of Q and N depends on their magnitudes relative to M.

These, in turn, depend on the geometry of the beam (length-depth ratio, etc.), on the

constraints, and on the loading intensity and distribution. Work of Drucker (1956)

and Neal (1961), among others, has dealt with such interaction relations. Very few

studies have made use of them in dynamic problems, and these will be discussed

subsequently.

The response of a beam to a severe dynamic load is a complicated set of

phenomena. Elastic vibrations are excited. At certain times and locations the yield

moment of the beam will be reached. Then plastic deformation occurs in regions whose

boundaries move, and which are separated by regions where the yield condition is not

satisfied and hence elastic action continues. The problem of determining in detail

the simultaneous elastic and plastic actions is obviously beyond conventional analytical

techniques. It can be handled only by completely numerical procedures, with difficult

questions as to stability and convergence in choosing intervals remaining to be

answered, or by special analytical methods appropriate to special ranges of conditions.

The above refers to solutions in which deformations of the beam at all points

along its length are determined; that is, in which the beam is treated as a con-

tinuum either by differential or by difference equations. Because of the difficulties

indicated, most of the work concerned with design problems has replaced the actual

bea-m frame, or other structure by a model consisting of an 4 1equivalent" mass-spring

system of one degree of freedom, or a small number of degrees of freedom. This

approach will be valid if there is actually one mode (or a small number of modes) of

deformation (elastic and plastic) which predominate,; over all others. If interactions
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between many modes need to be considered, this method becomes extremely cumbersome, and

there is little evidence in the literature as to its reliability. However, it is

-- essentially all that can be done in most cases of complex structure.

In the following, main attention will be given to the concepts, the main

Sresults, and the limitations as to further extensions (as they appear to the writer)

of the approaches to dynamic plastic analysis of beams. A few investigations with a

close combination of analysis with experiments have been published. These are mentioned

at appropriate places and will be discussed more throughly in Chapter III. Little

attention can be devoted to methods which treat a complex structure as a one-degree-

of-freedom mass-spring system, since almost no test data is available in the open

literature with which such results can be checked.

2. Elastic-plastic Analysis

There is only one "exact" theory for a material supposed to have a general

elastic-plastic stress-strain characteristic. This theory was developed by H. F.

Bohnenblust (Duwez, Clark, and Bohnenblust, 1950), and is based on a result obtained

much earlier by Boussinesq (1885). It rests on the reduction of the partial differential

equations of the beam motion:

2

ST -+ m = 0 (2.1)
X_ at2

Q = a• (2.2)

M M(K) = M (.(2.3)

(where Q shear force, M bending moment, K = curvature, y transverse displacement)

to an ordinary differential equation through the introduction of the new independent

variable cx 2/t where c is a suitable constant. Bohnenblust showed that
4-

I
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f - (n)( .u

S| t

where

*1 24a 2 (2.5)

For any relation M M(K) between bending moment M and curvature K the system of

Equations (2.1) - (2.3) can be reduced to an ordinary differential equation for a

new dependent variable S(n),

d S + El dý S = (2.6)
dn2 dM

where
23 2•2 d

3(n) = La Ft Q = 2a r~ d (,
dn(2.7)

Formulas giving M, Q, K, and y in terms of definite integrals involving S(n) are

easily derived, and in principle a complete solution for a general elastic-plastic

material can be obtained. However, the Bohnenblust solution involves the following

limitations:

1. The solution is for a constant velocity impact; the beam being at rest

for t < 0, the force P required to produce the impact velocity

V at x = 0, t > 0 is found to be

p = £1 S(O) (2.8)
3a 3

The impact velocity is related to S(n) through

21 0' '.

The solution holds only for the above conditions; unloading cannot be

treated.I
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2. The solution holds for an infinite beam struck at x = 0; no modification

r to treat finite beams seems possible.

Solutions of the Bohnenblust type have been given for semi-infinite beams

under constant velocity impact with constant moment (Conroy, 1956); and a number of

comparisons have been made between elastic-plastic and rigid-plastic beams (El -

and between perfectly plastic and linearly work hardening materials (Conroy, 1952).

These comparisons show the spread of deformations for particular conditions, but do

i • not seem to provide any general guide-lines for other loading conditions on finite

S~beams.

In Section 1 of Chapter III some results of Bohnenblust's solution will

be compared with those obtained by simpler approximate methods for the same problem

and for modified problems which may more realistically represent conditions in the

experiments described by Duwez, Clark, and Bohnenblust.

An elastic-plastic theory for dynamic loading which is less exact (in

general) but much more widely applicable and useful than the Bohnenblust type of

analysis, is that due to Bleich and Salvadori (1955) and applied later by Thomson

(1954), Allen (1955), Alverson (1956), Seiler, Cotter, and Symonds (1956) and others.

The basic ideas of the method are that the motion of the beam (or other structure)

is elastic during the initial instants of motion and is described by an analynis

in terms of a certain set of normal modes; this initial elastic phase ends when

the bending moment at some cross-section reaches the limit moment M . The method ispI
simplest to apply if the beam is made of perfectly plastic material with M = Mp

while plastic flow occurs. If the material is assumed to be of this type, the

elastic phase is succeeded by an elastc-plastic phase which again Is described in

terms of normal modes, but which in general requires different normal modes than those

"of the initial elastic phase because different end conditions must be satisfied. The

II
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cross-section where the limit moment was first reached is assumed to remain at M duringp
this phase, while on adjacent cross-sections the yield moment is not reached, so that

equations of elastic beam dynamics apply. Thus, there is one cross-section at which

plastic deformation occurs, all other parts of the beam bebavirg elastically; the section

where M = Mp behaves as a plastic hinge, plastic deformation in the beam being concen-

trated at this point. The hinge is assumed to remain statioa&ary. Continuity of displace-

J ment and velocity exists across the hinge, but not of slope angle 6 and angular

velocity i. The slope angle 6 at the plastic hinge is not directly related to the

moment there. The hinge remains active, and plastic deformation continues so long as

6> 0. When 6 = 0 the plastic hinge disappears provided for subsequent times M < M
p

Further motion then obeys equations of elastic motion.

If the beam is made of a work hardening material the plastic deformation

cannot be taken to occur at a single isolated cross-section, as is customarily done

in theory of ideally plastic structures (ignoring the implication of infinite strains).

The plastically deforming region must occupy a finite length Ax across which the slope

angle change Ae is M
Ax m

AO -dx - dM (2.10)
I ax JM Q
0 p

where MM and M are the bending moments at the ends of the plastic segment. If themp

length of the plastic region is assumed to be constant, an analysis of Bleich-Salvadori

type can be carried out in terms of normal modes, although with much more difficulty.

The method does not seem to have been applied except for an ideally plastic material.

Strain hardening can, however, be taken into account very roughly by taking Mp larger

than the actual yield moment, by an amount depending on the deformation.

The method is easy to describe and straightfoL'ward to apply, in principle.

In practice, there is a considerable amount of labor in determining the successive sets
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of normal mode functions, and the calculations of the time when 0 = 0, and of the

permanent angular and lateral deformations are tedious. The series for the deflec-

tion usually converges rapidly, but the series obtained after differentiations to

give e and 0 converges more slowly or may fail to converge.

Elastic-plastic solutions have been worked out irt terms of normal modes

for the following problems:

Table II I

ELASTIC-PLASTIC SOLUTIONS OF NORMAL MODE-PLASTIC HINGE TYPE

CASE END CONDITION LOADING REFERENCE

V
(a) free-free impulsive, y(Ox) 1 - cos M) Bleich & (1955)

(span 2L) (x as in Fig. 1 1) 2L Salvadori

(b) V sin Seiler, Cotter & (1956)
Symonds

(c) simple supports uniform load: rectangular
pulse Seiler (1954)

(d) simple supports mid-point force :tep functions ThImson (19S4)

(e) clamped mid-point forcez step functions Thomson (1914)

(f) cantilever impact: base changes velocity Alverson (1956)
linearly in time,
then remains constant.

(g) cantilever same as (f) Stallybrass (1960)
with mass at
tip

(h) cantilever uniform pressure: triangular Allen (1955)
"(blast)
pulse



-27-

As an illustration of the method just descrilbed the solution of case (b)

above is presented. The problem to be considered is the elastic-pJastic response of aIi
prismatic beam of span 2L and flexural rigidity E1 with the following initial conditions j

on displacement and velocity:

y(xO) 0; (x,O) V sin (2.11)
t 0o 2T

The beam is assumed to be simply supported, and the boundary conditions are written as

follows:

y(O,t) = y(2L,t) = 0

2 2 (2.12)

*fX (o,t) = 2!Y (2L,t) 0
"ax2 ax 2

Fig. II 1 shows the initial beam configuration and positive directions of co-ordinates

and moments.

The analysis is based on the moment-curvature relationship shown in Fig. II 2,

and the equation for the elastic phase of the motion is taken to bt

LI 4÷ m 0

ax at2

Solving Equation [2.13) with E-uation.: (2.11) and (2.12.), we obt0 .

4V kL 2  2
y(x,t) 0 sin 11 sin Ir (2.14)

I 4kL2

where

2 m (2.15)

As stated previously, the elastic phase ends when the maximum moment in the'I
I
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beam reaches the limit moment M. This occurs at x L at a time t, such that
I p

--M(L,t ) M -=EI!- Y (Lt 1 ) (2. l)
p ax2

or, using equation (2.14), when

M ~2ir
- P sin V-2-1 (2.17)

ElIkV o 4kL"

From equation (2.14). the conditions at time t1 or the initial conditions for the elastic-

plastic phase are

4V kL
2

y(x, 1:) -a sir sin n (2.18)
12 2L 1

. 1T

(X't V sin 2- cos ri (2.19)

where

2
T t(2.2

4kL

Fig. II 3 shows the assumed shape of the beam for the elastic-plastic phase

with a plastic hinge at the center where rotation is unrestricted while for the remain-

ing half beams of length L, equation (2.13) applies. Therefore, equation (2.13) must

be solved subject to the initial conditions given by equations (2.18) and (2.19) and

the following boundary conditions:

2

y(Ot) 0(, t) = 0 (2.21.)
ax

"-EI 2 (Lt) = M; 2 (L,t) 0 (2.22)
xax

I
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I
The final general solution is obtained in the form

y O(x,t) + Y(x,t) (2.23)

where

IM L2 5 3 3x(t-t )2
P(~t (ý P [x x (2.24)
El 40L5 4L3 2k2L5

Y(xt) [A + B (t-t )Ix + E X (x)

An s n k 1 B cosin

n n SX n(x) :sin A nL sinh A x + sinh X L sin A x

and An satisfies the equation

tanh X L = tan A L (2.26)
n n

so that X L V n7 + w/4.n

The coefficients A0 , B0 , An, and Bn, are evaluated in the usual manner by using the

initial conditions given by equations (2.18) and (2.19).

For the foregoing solution to be correct, the bending moment IM(xt)! - M
-- 0

at all points in the range 0 < x < L, and the sense of rotation across the plastic

hinge must agree with that of the bending moment at the hinge. The latter remark

indicates that the srlution is invalidated at a time tf such that

•x(Lt):0 (2.27)

2!X (L.,t, 0

By solving equation (2.27) an expression is obtained for the time tf and

|1i•
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nubstitut.\ng this value for t in equation (2.23) the maximum deflectionr 6f and slope O

at midspan are given as follows:

EI f .48 + 29 9 24 '2 4B 2--y n'6 = 4- 4 n f + - 4
M L2 4 280 40 14
p

4a 2  4a 2
.n nsin 2 f 4 cos - qf

4 4 I - (2.28)
nz 5 4T n=1 '4

a (1 -, ) a (I -
1ban 16a

fl n

*_'8 39 5 48----' 24 '2
L 5 f + 8 2S-1 n, nf

-i • o 4 +o o "4 -•
p t 1T 1t

2 42

sin -co ---a n
2 f f 4 2

-IT V- ------ - (2.29)
n al 4 (1 7- ) n=1 6 (1 TT 4

n 16 n 1 1
16a lI~a

n n

2
where n- ( t ) (2.30)

4k1, -(f 1

mEIV2

and 022.31
2M 2
p

In the above equations the approximation5 that an XL ni + 1/4, tanh a 1, and

sinh a -> I for all n are made.n

The ,elastic-plastic solution is plotted ii: Figs. IT 4 for various values of

S which is the ratio of the initial kir.etic energy to tVe maximum elastic energy

"capacity of the beam. With the exception of Fig. 11 4(a) , all the other figures show

a point of zei'o slope before the absDolte maximum point of the total plot. The
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I
Table H 2

"First max, of O(t) curve Absolute mdximurn
JSR6 M8 M6 El6 f0 Mf6Uf.

M-L f M-2 2 2 3 ML f 2 2 2
p M L2 mV V0 p M L mLV2 mLV

p p 0 0

2 L-,o8 0.284 0.654 0.142 0.327 0.284 0.654 0.142 0.327

2 1.24 0.62 0.998 0.155 0.249 0.82 1.168 0.205 0.292

5 4.0 2.00 2.34 0.200 0.234 2.34 2.64 0.234 0.2614

13 11.9 5.96 6.27 0.229 0.241 6.30 6.59 0.242 0.254

24 24 24

W CO 23 - 1) - 0.246 -(2S - 1) 0.246 0.246
'I 1! i

"Single-
hinge"
Rigid- 1 1
Plastic 72S ZK2S 0.25 0.25

Rigid- 1
Plastic -.c2S 0.239 0.167 0.239

6 (2S)

0I
M*..L V I;Ifjf M 8f Elgf

S 2 R 1V2 Ee -2Sme-'L etc.
2M2  M L mLV pp 0

I
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computation of the final angle Of is based on the time when the slope of the curve of

8 versus time first becomes zero and, therefore, in many cases, it is likely that the

theory will not give the coriect maximum. No attempt was made to investigate this

phenomenon, but it does indicate another elastic phase followed by an elastic-plastic

phase which would require a second set of eigenrunction solutions. Results are

presented in Table 11 2 for both the first maximum and the absolute maximum points

of the curves. It is expected that the corresponding maximum values give the range

within which the actual maximum deformation occurs.

The problem under discussion was also analyzed by Seiler, Cotter, and Symonds

(1956) assuming the beam to be composed of a rigid-plastic material. In this case

elastic deformation is neglected, and the moment-curvature relation is as illustrated

by the dotted line in Fig, !I 2. It is shown that, in order to satisfy the boundary

conditions at the supports and the assumed moment-curvature relation, the beam must

deform with rigid segments at the supports separated by a central finite plastic zone.

The plastic zone has a constant moment M and the plastic interfaces separating thepI

three segments travel towards the center of the beam- In the final phase of the

deformation process the central plastic zone reduces to a point hinge at the center,

ariu tlu jw.if beams rotate about this hinge until all the energy ;,s absorbed. ihe

final angle %f of the tangent line of the middle is given by

M
N =f (2.32)

mLV

This approach to problams of dynamic loading is outlined in greater detail in a later

sectiun of this sukrvey, but for the purposes of comparison, results computed from

equation (2.32) are included in Table II 2 under the: heading "rigid-plastic."

Bleich and Salvado-,i suggested an "upper bourid" solution wnich assumes that

A
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the initial kinetic energy is completely absorbed by a single plastic hinge at midspan.

This is a simplified rigid-plastic solution, and the angle of rotation at midspan is

readily obtained from the following equation

2
1/2 mLV =2M6 (2.33)

Deformation values calculated from equation (2.33) are also given in Table 11 2. It

must be noted that for some problems equation (2.33) may not determine an upper bound.

Discussion

The elastic-plastic method of Bleich and Salvadori only applies when the

plastic hinge is stationary and when the length of the hinge may be neglected in the

analysis. Theoretically, non-uniform or unsymmetrical loading arrangements can be

considered and also force pulses of various amplitudes and durations may be treated

but compiutations may become tro-iblesome, and some series of the solution may not

converge or, at best, converge very slowly. An extension to the elastic-plastic

theory has been proposed by Bleich (1956) by which many hinges at various locations

may be included in the analysis. This is accomplished by using a numerical method to

find the contribution of the rotations at the plastic hinges to the 'otal deformation.

The same approach is employed by Baron, Bleich, and Weidlinger (1961) in describing

a completely numerical solution and is presented ii, Section 3 of this chapter and is,

therefore, not included here.

The fundamental difficulty of a Bleich-Salvadori type of solution is that it

is unahlp t' co-nsider "spreading" of -he plastic hing at large loads, i.e., violation

of the limit condition M >j1.'1over a finite scction. in the problem under discussion,

the authors (Seiler, Cotter, and Symonds) examined the plastic--morient condition at

S sections along the beam. Fy retailni.nc, only iea=lin' ters in 4yqaatior: (2.25) an

approximate expression for bending moment is obtained as fo.•w,:

q III
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M 3 13 2 - sin aI sinh a + sin a sinh a1 4 2'
! .2 1.+ (2S- ' 4 -- sin-- a 9  Ip r23 r

a a2 (1 - 16a ) sinh a1I

n

sin a2 sinh a2 - sin a sinh a, 4
2 2 .2 2't sin - a n 1 (2.34)
3 22a 2 sinha a2

2
where C X -, a 4k2

whee x a. - nit + vr/4, q -L- 2 (t - t

Using equation (2.34), Figs. II 5(a) and II 5(b) show plots for two values of ta'

with M/M as ordinate and C as abscissa. These equations show , in an approximate
Z ip
Smanner, that the limit moment will be exceeded at , 0.9 when S > 1.2 and at 4 0.5

when S > 3.9. For quite reasonable values of S > 1, these equations and curves
A

demonstrate that the limit moment will be exceeded over an appreciable length of the

beam.

For large energy ratios, i.e., for S approaching infinity, the elastic-

plastic solution should approach the rigid-plastic solution, but referring again to

the example just outlined, the values 0.246 and 0.167 given by the respective

theories for M 6 /mLVL are in poor agreement. The "single hinge" rigid-plastic
pf

solution gives a corresponding value of 0.25 which agrees well with the limit of the

elastic-plastic theory, but this agreement is to be expected since both approaches

are based on the single hinge assumption. The limiting value for deflection by the

• - elastic-plastic theory is 0.246 which shows better correlation with values of

0.239 (rigid-plastic) and 0.25 ("single hinge" rigid-plastic) tnan the values for

* angular deformations show.

It must be concluded that the elastic-plastic solution, as presented, is

* only strictly true for deformations occurring in the range S L 1 when elastic

* effects need to be :onsidered. No experimental work has been carried out with the
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spe..... of• LsIzz %_1ihe elabti-pictsic solution in this range of low intensity

loading. The tests results of Aspden and Campbell ('966) mentioned in Section 5 of

Chapter I indicate that some caution may be required in choosing a value for the yield

moment. They showed for mild steel that the transition from elastic to plastic states

of deformation in bending may occur at an enhanced value of the static plastic moment

where the yield curve shows a sharp peak. This increase in yield varies with the rate

of loading but even for low rates the effect may be considerable. However, these

effects, as noted, depend on the prior treatment of the material and on the geometry

of the structure in complex ways that have received little investigation.

3. Numerical treatments

The diffitulties of elastic-plastic analyses of the types outlined above are

such that the analytical solutions must be replaced by schemes of numerical solution

of the dynamical equations. Quite general numerical schemes have been described by

Newmark (1959) and by Baron, Bleich, and Weidlinger (1961). These schemes both replace

the actual structure by an assemblage of discrete masses connected by various kinds of

structural elements; they approach the solution in different ways, which will be out-

lined. A basically different approach is that in which the partial differential

equations of motion are first written and then reduced to systems of difference

equations which are then solved by appropriate techniques. The only complete solution

of this type for a beam seems to be that obtained by Alverson (1956) for a problem

of impact of a cantilever.

More recently than Newmark and Baron et al, a group under Pian and Witmer in

the Aeroelastic and Structures Research Laboratory at Massachusetts Institute of

Technology has devised schemes for the numerical solution of dynamic load problems of

beams, arches, plates, and shells (Witmer, Balmer, Leech, and Pian, 1963). Their

numerical technique was originally programmed for the MIT 7090 computer, and is evidently

I
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highly successful, in view of the generality of the treatment, the complexity of the

problems solved, and the apparently efficient use of machine time. Witmer et al have

included not only elastic deformations but finite changes of geometry, strain hardening

and strain rate sensitivity in the analysis. Their finite difference scheme employs

a step-by-step explicit method, the structure being replaced by a finite number of

masses and connecting links. The connecting links are chosen to consist of two or more

flanges carrying tension or compression stresses, separated by web material which carries

shear stresses but is assumed to undergo no shearing deformation. With this model,

the use of a forward difference scheme requires restrictions on the choice of the time

interval At in relation to the space intervalAx, in order to achieve stability in the

computations, i.e. in order to prevent errors from propagating with increasing magni-

tude. Plan, Witmer, and co-workers have not analyzed error propagation theoretically,

but find empirically that At/Ax = 0.7/C gave satisfactory results, where C. =

is the speed of elastic waves of plane stre3s. This direct proportionality between

At and Ax is apparently due to the choice of model.

We shall not attempt to describe the MIT techniques in detail, even though

the- are the most versatile of those that have been described. Reference will be

made later to one result presented recently in discussion; this concerns the problem

of a beam subjected to impulsive load at the tip, and will be described in connection

with test resý"lts on beams and on the inclurion of rate sensitivity of the yield stress.

We shall summarize the approaches of Newmark (1959) and of Baron et al(1961)

in order to illustrate some of the problems arising in numerical treatments of eiastic-

* Plastic problems.

Referring to Newmark's method, a distinctive feati.re is its viewpoint of

separation of the dynamic problem from the one of structural properties. The mass of

the struuture is first concentrated in a finite number of mass particles. There are

no rules for making this substitution; an engineer must largely depend on intuition.I;!

I!
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At any I-ate, thet'e 16 theu a finite number of degrees of freedom, and a scalar equation

ii of motion for each degree of freedom. Newmark writes the typical equation of motion in

the form

Ft) R1 ma (3.1)

where

a is the acceleration along an axis corresponding to a particular

degree of freedom.

m is the mass of a typical mass particle.

P(t) is the external force component applied along the axis for

which a is defined; P(t) is assumed to be known.

H is the resisting force exerted by the structure, along the

axis for which a is defined.

Newmark's method depends on the concept that the complete system of resistive

forces, of which R is a typical member, are all determinable at any given instant

from knowledge of the current geometrical configuratioa, the history of deformations,

and the known properties of the materials. The computation of the system of resistive

forces requires the solution of equations of static equilibrium, even though viscous

or other rate dependent physical effects are involved.

The integration of the equation of motion (3.1) is performed by an iteration

scheme. Consider that the configuration of the structure is known at time t so then

displacements and velocijies areknownat all of the mass points, together with the

resistive forces R of the structure. Given displacement & n velocity v and acceleration

a at tn, the problem is to determine ,. + 1, Vn + 1 at time tn + 1.
n nfl n

Let t - t n h (3.2)n+ 1 n
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Newmark discusses the following difference formulas:

"(I - y) a h i yah.3)
n+ln n n an+lh

•~ i n÷Vnh ÷ ( - B) ahn

where y and 0 are constants to be chosen so as to facilitate the computation.

Postponing for the moment discussion of the choice of y and 6, the iterative

scheme is as follows:

1, let an 1 be a guess for a
2, compute vn+l from equation (3.3) and front equation (3.4)

using a n+Il, V, &n.[

3. from knowledge of the configuration of the structure (all values of

n and v having been found), determine the corresponding
nIl n+l

resistive forces Rn÷I.

4. calculate an+1 by means of equation (3.4),

"a -n+ = - R' ) (3.5)ai l m Pni-l ni-i

The cycle is repeated, if necessary, until sufficiently close agreement is obtained

between the guessed value a.+ 1 and the computed value anl.

The choices of h, y and 8 are governed by considerations of convergence and

stability. Suppose the actual motion is that of a simple harmonic motion with radian
2!

frequency w; then a = -w 2. For a choice an'1 for a+1 we have

= + vnh + (1 - 0) h2a + Ph 2 a

•nh n n 2 n n+l

anl 2 ýn+l
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a2
- 2 Vh (h t R)h2a- w h3l ~ n 2 jh 2n+

The actual value a+ 1 is given by

2 1 2 2 2an+ F- + vnh )h - 2Sh a1-n 2 n_ nl

The ratio p of the error of the derived result to the error of the assumed result is
if

a -~l a l 22an+l anl 2 2 (3j)
an+ -an+ 1

Convergence of the iteration scheme requires Ipf<!. Hence we have the result

that for convergence

22h I -
aw2h2< 1; or 1 < 1,/ & (3.7)

where T 2w/w is the period of the motion. For a complex system, T must be taken as

the smallest natural period of vibration, i.e. the period of the highest mode of

vibration. If plastic deformation occurs, the periods of natural vibration increase;

hence h can be correspondingly increased.

Stability is similarly studied under the assumption that the system is in

simple harmonic motion with radian frequency w, so that a = -w2 &. Appropriate

equations of the type of equations (3.3), (3.4) can be combined to obtain the folowi"g

difference equation in &:

n~l - (2 2 n-I 2 )n - r-i) 0 (3.8)

where

2 w2h2

1 -
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The last term on the left hand side of equation (3.8) is proportional to the finite

difference formula for a velocity, and hence this term corresponds to a viscous

damping. Since the system is assumed to be executing simple harmonic motion and to

lack physical damping, the damping term in equation (3.8) is spurious. Elimination

of the unwanted damping terr, therefore requires the choice y = 1/2, and the difference

equation for simple harmonic motion is then

&ntl (2 a 2) &n t &n-1 = 0 (3.10)

If one looks for a solution of form 4 = , one finds that

2 2h2
Q2 - < 4 (3.11)

1 + 8W h22

is the requirement for A to be complex and hence for the solution to be stable.

Summarizing, in Newmark's method the iteration scheme makes use of the

following difference equations relating time t, acceleration a, velocity v, and

displacement &:

h t n+1 -tn (3.12a)

a I (t) R(() (3.121)

1 21
v v+ anh + a-- (3.12c)

Vntl r n 2 n antlh

"+ n h + (C - 8) a h2 + 6anh2 (3.12d)
ntl n n 2 n n1il

where tne time interval h and the constant 6 are related by considerations of

convergence and stability, assuming the system to be executing simple harmonic motion

JU
I
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with period T 2w/w as follows:

Convergence: ! < 1 (3.13a)

Sh T -1 1

Stability: T< (3.13b)

The two criteria give limits as indicated in Table II, 3.

Table 11 3

Convergence and StabilitL imits

0 1/1.2 1/8 1/6 1/4

Limit on h/T

Convergence h/T < 0.51' O.450 0.389 0.318

Stabilitj h/T < 0.318 0.389 0.450 0.551

The convergence and stability limits, it should be remembered, are derived

from consideration of motion of the system in simple harmonic motion with period T.

For an elastic system with many normal modes, T must be interpreted as the shortest

natural period. In more complex problems in,,lving plastic deformations, strain rate

dependence, geometry changes, and other physical effects which preclude modal analysis,

the above can only be taken as a rough guide. As a matter of fact, although Newmark's

method has been applied to many problems of elastic and elastic-plastic deformation,

there seem to be no published accounts of application to problems where geometry

changes required changes in the equilibrium equations and in tne expressions for

material behavior. or to proob!ems i*- .. -- ----i .... t...p of id.a.Ly

... . ..Iv , = u ,,• •*• c• t o d a l



1 -lastic nature. Because of thv very general conceptual nature of the method it flhoul(d

in principle be applicable to such more general problems. However, que-tion of conver-

gence and stability remain to be investigated for these problems.

Less general but more direct and simple for many problems are finite differ-

ence methods of more conventional type. An example of such a method is that described

by Baron, Bleich, and Weidlinger (1961). A typical beam problem is indicated in Fig. II

6(a), The distributed beam mass is first replaced by a number of mass particles. The

- notation is indicated in Fie,. II 6 y1, Q., and M. being displacement, shearing
J

"force, and bending moment respectively. The intervals b. between mass particles can
3

be chosen arbitrarily, a.,d the applied force per unit length qj, mass per unit length

mi., and other beam properties can have any values but are taken as constant in each2

interval b.. Thus the equation of motion for the typical mass particle is2

"M. M M.- M.
m. Y' P. + Q - Q. = P + -M(3.1)] j ] +1 j bj+1  b.2

M - b + m+ j
where M. m. +i2 +l (3.15)

P. =qjj ÷ qj+l bj+l (3.16)
2

b. = x. - 1j j j-l

For elastic action at the typical station x., one introduces an effective stiffness2

factor K. by writing

2 EI y.i - y. 1I Y*.1 -Y.

M. K.O. Y- (3.17)S j . j+l b. b.
2+ ]+1

* where 2 El
j b- +b3j+8bj j+lb+

I
I|
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Fol the sake of illustration, let us tal'e the simpler case of a uxiform

be'am arid lct

I]
m, j m

b. b
m

Then the basic equations take the forms

b m 1 P 2 M. (3.19)
) j b j -

M. EI 62 y., M.< H (3.20)I b 2 y3 Mj p

where 62 f. f - 2f. + f (3.21)
1 j+1 ) j-1

Baron et al propose a forward integration scheme using the finite difference formula

Y((t) = "- I (t + h) - 2yj(t) + yj (t - h)_ (3.22)

where h = At is the interval of the time steps. This corresponds to taking a = 0

in Newmark's scheme, and hence the requirement for stability is h/T < l/7 = 0.318.

Given values at time t, displacement at time t + h can be found from

h 2  1- 2yj(t + h) 2h) + - (t) + . 62M (t) (3.23)

When the bending moment as computed from equation (3.20) exceeds the plastic

moment M., at a station Xk, a plastic hinge occurs at this station, Angular rotations

at sonstant bending moment are allowed to occur across a plastic hinge, and the,
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deflections are no longer related to the bending moment through elastic equations suchj

r as equations (3.17) and (3.20). If there is a plastic hinge rotation ("kink") ak a

station xk., a deflection yj can be associated with this rotation. This deflection can

be written as

yj = bk jk (3.24)

w e e6 20 -1 for j = kSjk

' (3.2S)
6 2 jk : 0 for j k k

Thus b jk represents the deflection curve corresponding to a kink angle unity at station

d k. If hinges at several stations have been operative, their total contribution to the

deflection can be written as
d
-- Y E k bok4 jk (3.26)

The total deflection at any instant t can be written as

yj = y + yj = y k + IkbOjk (3.27)

The elastic part ye is related to the bending moment through equation (3.20) (or more

I generally, equation (3.17)), so that, -sing equation (3.25),

Lk 6 o (t) L- - (t) (2.28)
k b 2'b

I Let us write

0 k(t + h) = k(t) + O k(t) (3.29)

14

I
Irl£•
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Mk(t f h) Me(t + h) - .- Ak(t) (3.30)
kj

where

ke( )=-E 62yk( h) -

b(t + h) = 2 0 +h -h -- Ck(t) (3.31)

Suppose all values at time t ar- known; i.e. yj(t), pk(t), Hi(t) are known for ai'

j. To determine values at t + h, assume (at each plastic hinge station xk ) that

Ak (t) = 0. All displacements yj(t + h) can then be calculated from equation (3.23)

or its equivalent for more general cases, and the corresponding bending moments
ee(t+h

Mke (t + h) are given by equation (3.31). Suppose at x. = x that MH (t + h) < M
kI kk p

this is then the correct moment at xk, and A k(t) = 0. However, suppose it is founrd
e

that Mk (t + h) > M . We then set Mk (t + h) = M and compute AO(t) from the equation
p p

E-- El A t)= Me (t + h) - M (3.32)

F k kt) M

Then we can compute

Ok (t + h) : *k(t) + A0k(t) (3.33)

and

yj (t + h) = ye (t + h) + Ek býk(t + h)ý,k (3.34)

e
where the deflections y. are those obtained by assuming that the hinge rotations are

all zero in the interval from t to t + h.

The procedure is outlined above for "positive" hinge rotation increments, as

in Fig. II 6(e). It clearly applies with obvious sign changes if hinge rotation



increments are negative. In any case, Mk(t) 0 it Imt(t + 101 ý h There is e'o

irif iul abo computer so t hat any nu.,wcr

d u of hinge rotations, of any signs, can be accounted for. However, there has apparently

been no attempt to adapt the method to more complicated situtations, such as, for

f example, to i roblems where geometry changes, axial constraints, strain hardening or

strain rate influences on the yield stress must be considered. An example of the

I application of this method will bt given later for comparison with a much simpler

approach.

4. Rigid-Plastic Analyses

The difficulty of obtaining a complete elastic-plastic solution, by either

analytic or numerical means, has forced consideration of simplifications in the govern-

ing equations. In plasticity theory the neglect of elastic strains by comparison with

plastic ones leads to a great simplification in the analysis, and this is a natural

and permissible assumption when the typical plastic strains are very much larger tnan

the largest elastic strains. This assumption, namely tnat strain rates are zero except

at points where the plastic yield condition is satisfied, has been made in solving

many problems of static plasticity. Its use in problems of dynamic plasticity seems

to have begun during World War II. G. I. Taylor (1948) discussed the interpretation

of dynamic compression tests in which a projectile is fired into a rigid plate by

] means of a rigid-plastic analysis, (Lee and Tupper (1954)). The use of the concept

of rigid-plastic behavior in beam dynamics wds suggested by E. N. Fox (1947). Conroy

(1952) studied in more detail the application of the concept to beam problems 1'y

S investigating the infinite-beam problem studied by Bohnenblust. Rigid-lastic

behavior must be regarded as the limiting case of elastic-plastic behavior as tne

J Young's modulus E approaches infinity. Conroy showed that for an ideally plastic

material the rigid-plastic solution of Bohnenblust's problem could be easily written

See Puwez, Clark, and VohnenLiust (lq50)I
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in simple closed form. ror tht same material the elastic-plastic solution was solved

5 for a succession uf values of Ell/m where Li is the fiexural rigidity, m is mass per

unit length ranging from 167 to 1k: and the results showed a satisfactory approach

to those of the rigid-plastic tolution, Lli/m = co. Conroy attempted also to find the

J rigid-plastic solution for a linearly strain hardening material, but was unaLle to

complete the solution and hence could not make the limiting comparison as for the

ideally plastic case.

A discussion of the general characteristics of rigid-plastic solutions of

problems of finite beams was first given by Lee and Symonds (1952). They showed that,

depending on load magnitudes, plastic hinges and finite plastic regions can be expected

to appear, and in general the plastic hinges and the boundaries of the finite plastic

S zones will move during the course of the deformation. Moving plastic hinges and

interfaces between plastic and rigid regions in general involve discontinuities in

the angular velocity and in the transverse acceleration.

The simplest type of rigid-plastic analysis is that in which perfectly plastic

behavior is assumed (strain-hardening is neglected). A large variety of problems

has been solved on this basis. These solutions are extremely simple by comparison witil

elastic-plastic solutions. The question that immediately arises is that of the physical

validity of the results. In the following discussion of rigid-plastic solutions the

main emphasis will be put on indications from theory and experiment concerning the

ranges of validity of this type of analysis. It will be shown that while the ideally

rigid-plastic analysis does provide a simple starting point, the conditions in which

it is permissible to neglect elastic strains are often conditions in which other

secondary effects become seriously influential. The most important of these secondary

effects, according to indications of experimental investigations, are (1) increase of

yield stress at high strain rates, and (2) change of mode of behavior caused by finite

Ii
ImI
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deflections in the presence of constraints.

*The great merit of rigid-plastic analysis is that the inclusion of secondary

I effects remains feasible in a solution of analytic type, without requiring a completely

numerical scheme of integration, Apart from strain rate and geometry change effects many

I other secondary influences, such as strain hardening, shear deformation, and rotary inertia

can be included in a rigid-plastic analysis. Any of these could be included in an elastic-

I plastic solution also, of course, but only in a numerical integration process which itself

i is by no means straightforward.

One-Degree -of-Freedom Systems

1 The following discussion will consider by means of simple examples the criteriar for the neglect of elastic strains, and fcr- the inclusion of the major secondary effects.

Some basic infoma.ion about the relation of rigid-plastic to elastic-plastic

I solutions can be gained from a study of the simpI"st structural model, namely a simple

spring-mass system.

I With the notation indicated in Fig. I1 7, the motion of the mass is governed I
I by the following equation and initial conditions:

m= P - Q(x) (4.1)

x(O) = 0 (4.2)

We shall consider motion due to a rectangular pulse of forc. as i,. Fig. II •3 w"
I magnitude P and duration T.

0

Suppose first that the spring characteristic Q(x) is that of elastic-perfectly

I plastic behavior, so that, as indicated in Fig, II 9, curve a, there is an elastic

spring constant k, a yield force Qy, and a yield deflection x . The solution for the

initial elastic motion involves the radian frequency w 2?/T of the mass-spring

I
I



systemf, end is

x =-(-cos Wt) t < (4.3)

This holds while the motion is elastic, i.e. for X X, Q • Qy. If x(ty) x and we
y y y y

assume that t _ <, the solution is readily found in stages, putting the right hand

side of equation (4.1) first equal to P - Q , for t < t < T, and then equal to - Q

for i < t. The maximum displacement x is then found by setting k(t ) = 0, solving for
Imm

t and evaluating x(t ) x . The final plastic deformation is x x - x . This
m m m p m y

result will apply to the case when t < T, i.e. when the load P is large enough so

that the yield condition is reached during the duration of the pulse. Alternatively,

if the load is small enough so the yield condition is satisfied at t > T, the maximum

displacement can be found in a s1i•,-lar manner. The results are conveniently exprebsed

in terms of the following dimensionless variables of the system;

- o load magnitude

ýy- yield force

w~ ~ 2i z 2fl= 2 Rlbcduration time

natural period of system

In terms of the above quantities, the results are as follows:

() f no plastLc defuration takes place, regardless of the value of

4.
___ __ 1

(2) If 4 , and 1:- < :plastic flow begins after the
C IS 4TS.... 2(1 - Cos C) - i ~

duration of the loa! pulse, t > T, and the final plastic deformation is given by

02l Cos ~ 1 u
y

(3) If < w and 1 - < P; or if 4> 11, < • < W: then plastic flow
1 -cos - 2.
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begins during the load pulse. t < -, and the final plastic deformation is given by

x_ k I 1 2 (4,5)-: x - * + /f - i (¢ - *) ÷ ,( - l)(r -. )
x 2

y

where 1
cos 4 ,

and (4.6)

The relations between t t and p, for ty < i, ire illustrated by Fig. I1 10.

If$1 - cos = 1, then t T; i.e. the time when the yield force is first

reached coincides with the end of the load pulse, and the quantity x /x is P - 1/2.
P y

To obtain the rigid-plastic solution of the problem, we use the force displace-

ment characteristic b of Fig. II 9, and thus assume that no deformation occurs if

P -- Qy If P > Q , the plastic deformation is easily found by integrating the equations

m=P - Q 0 < t < T (4.7)0 y- -

mk' - Q t < t (4.8)

The maximum plastic deformation occurs at time t when m(t 0, and its magnitude is
m m

x x(t ).p m
The result in appropriate dimensionless form is

Mx . _ 1u , - • t, (~ 9)

y

"We now compare the rigid-plastic solution equation (4.9) with the elastic-

plastic one equation (4.4). We note that

d



!A

mx mx X X
P = V _L 1_ = ..P (14.1)

Q T 2 k-xi1' y 4 2Xy

Y I

I We define the relative error as r
x P

where

x = plastic deformation of elastic-plastic analysis

x = plastic deformation of rigid-plastic analysisp

We are interested in how the relative error e depends on the structural parameters

P = ratio of applied load to yield load, and i/T = ratio of load pulse duration time

to natural period of the system. In addition to these, an alternative parameter express-

ing the severity of loading is the energy ratio R,

R = work done in plastic deformation X (412)
maximum elastic strain energy IQ x2-YY

The significance of the parameter R will be discussed later.

In Figs. I 11 and II 12 are shown curves of the deflections according to

elastic-plastic and rigid-plastic thenrvy and of the relative error c plotted as
vU

functions of p and R . The quantity R is evaluated from the result for the plastic

deformation x P as given by the rigid-plastic theory

# W

R' = Qx =2 -- 1)42

IQ x X - i) 2 (4.13)•Y Y Xy

where - Q x is the maximum energy that can be stored elastically in the spring-mass
2 y y

system.

L vi
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The results for impulsive loading are included in the Figures I 11 I 13

showing comparisons. By definition an impulsive load is one with P(t) and t such that

0 0, P(t)dt I (4.1L4)

"0

The impulse I imparts a velocity v to the mass, which then moves subject to the initial
0

conditions and equation of motion

x(O) = 0

(0) = v m ( 4 .15)

mg = -Q(x)

The plastic deformations are given by:

(A) Elastic-Plastic
2

my
p 2 --- -x (4.16)

(B) Rigid-plastic

2
Mv00Qy( '4.17)

P Qy

1 2
These results are obtained readily by equating the initi• kinetic energy -m vo to

"the plastic work Q x plus (in the elastic-plastic case) the stored energy XyQ.

For the impulsive load case, the relative error of the rigid-plastic solution

is

-e -1 (4.18)
2 R-

M v0

Xyy

I x!
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1 21
where R is the appropriate energy ratio - m v /I x O . Note that in this case the

2 2 yy

I error is always negative for R > 1, whereas for finite Y/T the error may either be

positive for all R in the range of significance, or may be positive in one part of

the useful range of R and nrgative in the other part.

The results shown in the curves of Figs. II 11 - II 13 are of less interest

for their numerical magnitude than for the general indications they give concerning the

validity of rigid-plastic solutions. The curves show that the rigid-plastic analysis

predicts a plastic deformation which approaches that of the elastic-plastic solution

as the energy ratio R becomes very large. However, while the condition

R > > 1 (4.19)

is necessary, it is not sufficient. The duration time of the pulse, in relation to

the natural period of elastic vibration of the system, is also very important.

The criterion R > > 1 was proposed by Lee and Symonds (1952) as a possible

means of estimating the validity of rigid-plastic solutions. In static problems one

expects a rigid-plastic solution to be a good approximation if the plastic strains greatly

exceed the largest elastic strains. Other than this, no general rules can be given

for the acceptability of such a solution. The concept of the energy ratio R is

particularly convenient in problems of plastic deformation of beams because in both

static and dynamic problems the concept of plastic hinges is of enormous advantage.

This concept implies perfectly plastic behavior, and the plastic hinge is conceived as

permitting finite rotations across a plastic zone of negligible length. In fact, of

course, the plastic zone is of finite length and the strains are finite. Estimates of

J strain magnitudes in plastic tones can be made, but the basic theory of plastic beam

behavior is convenient precisely because it deals with hinge Z-otations and avoids

direct consideration of strains. Plastic work done at hinges (stationary or moving)

I
I
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is easily computed in dynamic problems, and hence the energy ratio R of the total

plastic work .... th-c -PO V aiupo.ssible elastic strain enzergy is rudily computed.

The comparison of solutions of the simple one-degree-of-freedom mass-spring

system shows that the criterion R > > 1 serves best as a giide to the validity of

I rigic-plastic analysis for cases of short duration,high intensity loading. For these

cases the error in using the rigid-plastic method will be less than, say, ten percent

if R is greater than approximately ten, and the plastic deformation will be of the

order of five times the yield deflection. For long pulses, for example with T/I _ 1,

in order to have agreement to within ten percent the R value must be at least 100.

This implies plastic deflection such that xp/xy is about 50 or greater. However, when

the ratio xp/xy is interpreted for a beam (or other structure) as the maximum plastic

deflection divided by the deflection at the point of plastic collapse when the givenr type of load is applied statically, it becomes evident that very large values of

x /x predicted by a zigid-plastic analysis will generally fail to have physical
p y[ significance. This is because of the appearance at large deflections of new physical

phenomena not described in the original equations of motion used in solving thc rigid-

! plastic problem. Such phenomena may become important as catenary forces, if the ends

are constrained against axial motion; strain hardening; or increases of yield stress

with strain rate.

J To illustrate, consider a simply supported beam with uniformly distributea

load P, Fig. II 14. For simplicity, suppose this deforms as in Fig. II 15 with a

J plastic hinge at mid-point, final plastic deflection 6 and rotation angle a1 at the
P

support. The energy ratio is given by

R 2MGe 86
1 2 2 (4.202
T-M PL M DL2Mp MIIEI

I
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if we take 6 a LO 1/2. In the elastic range 6 = 5M L'/48 El, where M PL/8 is the

'd m I we f the deflection just as tCe plastic collapse load

,,kd-foi t Moent. A we .... n y as the deflectio

is reached, this is for the supported beam, zp,-'ximately

M L
6 p(4.21)

y 48 El

6
n , _ (4.22)

Y

"Thus for the beam, as for the simple oscillator, R = 0(6 /S ). Now the order of magnitude
p y

of 6 /h., where h i-, the beam depth, can be found from equation (4.21); for example, let

a/E 1.5 x 10 L/h 20. Then

6 C"5 L I
24 E 2 -8

Hence if 6 /6 50, say, then 6 /b 50/8 6. But at a deflection six times the beamenei p/y P

depth, a beam with constraints against axial motions would long since have ceased to

behave like a beam; in fact, as soon as the deflection exceeds the beam depth, motion

would be almost completely governed by catenary rather. than beam action. Hence a

prediction of 6 /6 50 on the basis of simple beam action would lack physical meaning,
p y

and an analysis for a long force pulse by rigid-plastic methods would be useless,

unless it took axial forces into account.

Apart from questions of additional physical effects not considered in an

elastic-ideally plastic analysis, the question of differences between the behavior of

a system having a single degree of freedom and a multi-degree-of-freedom system is

fundamental to a study of the prospective validity of a rigid-plastic analysis. One

may accept, as reasonable on physical grounds, the postulate that when far more energy

is fed into any system than can be stored as elastic strain energy, the resulting plastic

I
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deformations can be computed to a good approximation without regard for strains of elastic

magnitude. The question is whether the complex Ia plastic

] • deformations that may occur in a multi-degree-of-freedom system are likely to cause the

"approximation to be substantially worse, for a given energy ratio and ratio olý force

duration to fundamental period, than for a system with a single degree of freedom.

It should be possible to answer this question adequately for practical purposes

by carrying out complete elastic-plastic solutions (by numerical methods, presumably)

-- for a variety of structures and comparing results with those of rigid-plastic solutions,

Here we are concerned primarily with behavior of beams as one-dimensional continuous

structures. No calculations of elastic-plastic solutions for beams have been made with

sufficient completeness to permit general deductions to be made about the effects of

elastic-plastic interactions. The few examples for which calculations are available

seem to indicate that no large differences occur between the closeness of approximation

obtained for multi- and single-degree of freedom systems. Three examples of multi-degree

of freedom systems will be briefly cited.

Multi-degree of Freedom Systems:

(A) Syzcm conslsting of two equal masses and two similar springs (Fig. 11

16 (a) and (b). This is the simplest system of more than one degree of freedom, but the

plastic deformations caused by an impulsive load applied to the outer mass are much

more complicated when the two springs have elastic-ideally plastic characteristics than

for the single mass-single spring system, (Fig. II, 16(c). As indicated in Fig. II 17,

as the energy ratio R increases from zero, plastic deformation in the inner spring

" first exceeds that in the outer spring, while for R > 4 the situation is reversed.

Fig. II 18 shows times at which the two springs start to yield and cease plastic flow,

I as functions of R. Nevertheless, the total plastic deformation differs from that

I
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predicted by a rigid-plastic analysis by only about 10 percent of the total deformation,

when R = 5. As indicated in Fig II 17, the difference between the two results is very

nearly constant; so that the relative error of the rigid-plastic solution steadily J
decreases and is less than 3 per cent at R = 18. But the rigid-plastic analysis predicts j
the plastic deformation in the inner spring to be zero (the inner mass is acted on by

opposing forces Q on each side/. Hence although the total plastic deformation is
y

predicted with lUigt accuracy by the rigid-plastic solution, this analysis is incapable

of accurately dete,:Aining plastic deformations in the individual springs; even the

prediction for the plastic deformation in the outer spring is 20 percent in error at

(B) Simply supported beam with uniformly distributed load P(t) having

J ] exponentially decreasing time dependence

P(t) = P e-t (4.23)
0

S The elastic-plastic solution for the case T 1/2 T1 , where T1 is the fundamental

period of vibration of the beam, was given by Baron, Bleich, and Weidlinger (1961) as an

illustration of their finite difference method. The rigid-plastic solution was given

for general "blast type" loading by Symonds (1954); the particular case of exponential

loading (equation 4.23), including consideration of shearing as well as bending deforma-

tions was treated by Salvadori and Weidlinger (1957). Baron, Bleich, and Weidlinger

give results of calculations for initial load magnitues P up to five times the static

collapse load P = BM /L. Formulas for the energy ratio R, and deflection 6 at
c p y

collapse have already been given, in equations (4.20), (u.21). Values of R shown

in Fig. IT 19 were computed from the central hinge angle 6 given in the numerical

results pi-esented by Baron, Bleich, and Weidlinger,

R P -4 -, 7 7 o )7 (4.24)
2

M L o (4/24)
2EI

I I I I I l I I
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since their calculations take 6 /L ! .0027.
y

The curve marked "Simplified Elastic-Plastic" was derived by Baron, Bleich,

- and Weidlinger by using the fundamental mode of elastic vibrations during the elastic

phase of motion, and following this by a single hinge rigid-plastic solution with

.- initial velocity chosen so that momentum conditions are matched. This approach is a

sound one only for problems in which a single modR predominates; it works well in the

present problem, for example, but not in the previous example (A).

(C) Cantilever whose base is subjected to specified motion (Fig. 1120),

- namely with displacement and velocity as follows:

y(x,t) = yt(xt) = 0, t < 0, O_ x < L

2
V t

y(o,t) = 0
• 0 <t < t

Y t(O,t) =V -- -- 0

r- ot°

?i t > to

SYt(0,t) = Vo0

This is a problem of impact which has been used in experiments. (In general it is

- easier to impose and measure motions of a specimin than it is to apply forces of known

distribution and time history; hence problems of this type are advantageous for

laboratory tests).

The elastic-plastic analysis of thi. problem was carried out numerically by

Alverson (1958), who made use of the f.ct that the system of elastic beam equatiQns

(due to Timoshenko) which take account of shearing deformations and rotary inertia is

a totally hyperbolic system. Motions of the beam were therefore determined by finite

difference techniques based upon the network of characteristics of this hyperbolic

system; the characteristics are four families of straight lines with slopes dx/dt

I1
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proportional to sc1 and tc2 ' where cI = VE/0  and c 2 = 6 are speeds of uniaxial

tension and simple shear waves, respectively, in a bar.

Alverson carried out comDlete calculations for several cases, of Wh-ih one

was chosen to have non-dimensional parameters corresponding to ranges used in experiments

I conducted at Brown University. Two such naramelers specify the impact characteristics,

namely tho eneigy ratio R and a parameter 6 proportional to the base acceleration

I , 't during the impact. Numerical values used were

02

: L-V 8.33
M2L
EI

mL2V0 . -- V 250
Mpt

P 0

T/' -0.0055I
L _ 25
h

1 2

I C

C2

Alverson's results for the above case showed a remarkably complex pattern of

elastic and plastic deformations. The main plastic deformation is the angle of rotation

S0 at the base. However, the numerical analysis showed that this not only took place in
0

! an intermittent manner, but was part of a r~eg'Inn of plastic deformation at the base whose
size varied in a highly irregular way; even the sign of the rate of plastic deformation

was found to reverse at certain localities near the base. In addition to the main

I1
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I plastic deformation near the base, there was a secondary region of plastic flow of

opposite sign in the interior of the beam. This again was of an intermittent nature,

nd the .ou.daries of the plasti,. region moved backward and forward irregular Some

3 idea of the complexity of the plastic deformation is given by Fig. 11, 21(a), (b), (c),

wherc the times and signs of plastic flow are shown for various stations along the beam

length.

SLFig. i120(i~shows the plastic angle at the base as a function of thu parameter

6 - mL V/M -. (This solution was obtained by D. S. Green (1954), while the limiting

case T - 0 was treated by Symonds and Leth (1954). At S 250, the rigid-plastic

solution predicts a non-dimensional plastic deformation of about 0.39, whereas

Alverson's elastic-plastic result is about 0.30, corresponding to a relative error of

about 30 per cent. The ratio T/T should have essentially the same significance as

in a problem of loading by a force pulse. In Alverson's example T/T 1  .007, so that

the requirement that the time ratio be small is apparently satisfied. The agreement

of the plastic-rigid solution with the complete elastic-plastic one in the case is

I worse than in the examples (A) and (B), and this seems attributable to a more complex

r interaction between elastic and plastic deformations.

5. Plastic Moment Interactions

SIt is never strictly correct to ignore stresses in a beam other than bending

stresses. One must consider interactions of bending moments especially with axialI|
forces and shear forces. (In a general one-dimensional structure, we would also have

J to consider torsion, and bending moments and shear forces in two principal planes).

But in beamswith loads in a principal plane, stress resultants are M and Q (shear force)

I plus N (axial force) if deflections are not infinitesimal. Also, in an arch or ring

j N would appear from the start (even for infinitesimal deflections) as well as M and Q.

Two questions: (1) when do Q and/or N have negligible effect on plastic

I
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moment; and (2) when Q and/or N are not negligible, how can they be taken into account?

The important quantities governing shear and axial force are a shear force

Q and an axial force Np, which represent, respectively, the limiting magnitudes of
p

shear and axial force in a perfectly plastic medium, in loading by "pur shear" or by

simple axial force. In a beam problem, the ratio of the actual shear force Q to Q

and of the actual axial force N to N are related to the ratio M/Mr, when plastic

deformation is occurring, by an effective yield condition. In other words, plastic

deformation in a beam is governed by an interaction between M/Mp, Q/Q p, and N/N This

interaction is always present in practice in beams. There are indications fron. the

few problems that have been treated (mostly analytically, not experimentally) that the

interaction is more serious in the case of dynamric loads than for static loads.

We may write in general

SRectangular Section I or Box Section

a A
Q K- A K = --2iQp s 2 ss- A

N ao A
p y

PIP Kb yhA (b 1/4 K0 Z 0. 4

where A is the total section area, A is the web area, and h is the section deptn.w

There is a true "interaction relation" in sense of yield condition relating

M and N at any point (cross-section) of a beam, irrespective of general loading, support,

etc. But no such interaction relation in this sense exists for M and Q; we cannot

consider just one cross-section of a beam, but must consider the whole beam: loading

and support conditions. Published "M-0 interaction" curves all refer to a particular

problem, in most cases that of a cantilever beam. (Some published M-Q curves supposed to

give lower bounds on actual M, Q are wrong, since not all conditions for a lower bound are

-
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satisfied . examples are given by Neal i61a).

For brevity call "local" the interaction curve which is derived by considering

a single typical cross-section of a beam. As stated, a local interaction curve relating

M, N can exist (correct), but no such curve relating. M, 0 can be strictly correct,

Despite this, one may derive an !I-Q curve, say for a cantilever statically loaded by an

end force, and use it for estimates for other static cascs and for dynamic cases.

This is the procedure that has been followed,

(A) Moment-Sheur interaction

Obviously any results about importance of shear forces and shear deformations

in plastic deformations due to dynamic loads, obtained by using an interaction formula,

are highly approximate. Hence, we should not worry too much about the exact form of

the interaction curve. The best proposed curves are those of Drucker (1956) for

rectangular sections and Neal (961a) for I-sections, both for the cantilever with end

force. Drucker suggested the relation

M 1 - ( (5.1)

p p

as a good approximation for a rectangular section; this interaction curve is shown in

Fig. II 22(a). Since M = QL, where L is the length of the cantilever, and M /Q
p p

h/2 where h is the beam depth, particular beams are indicated by straight lines

M 2L QM h Qp
"p p

The lines drawn for the two cases L/h = 1 and L/h 2 in Fig. II 22(a) show that M

falls below M by less than two or three per cent if L/h > 2. This means that thep

"shear effect is entirely negligible for a rectangular beam in static loading, since

a requirement that L/h < 2 makes any treatment as a beam virtually meaningless. how-

I
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ever, such a coiclusion does not necessarily apply to dynamic loading.

U For I or box-section beams shear effects are larger. Neal (1961a) obtained good

low",i "ul"jt; (arain conl;idcriTn, t 1 ( cantilever' undter a Statc tip loading), his curve

being shown ill Figs. II 220() and 11 22(c) . together with appropriate straight lines

for particular beam ratios L/h 1 . Here the length hI was taken as h-t, where t is the

flange thickness; and Q is the capacity load of the web area in pure shear. (In view

of the approximations involved in using the results, olviously h1 may as well be

taken as the beam dppth h.) Neal's results show that an I section or box beam has very

little strength in bending when it carries a shear force greater than the shear capacity

of the web, with a very abrupt drop in moment capacity at this value of shear. In the

static problem shear effects are negligible for L/h greater than about 4; again this

does not necessarily imply the same conclusion for dynamic problems. The conclusion

that the shear capacity of an I section is essentially the shear capacity of the
o

web (Q g - A ) was demonstrated experimentally by Hall and Newmark (1955).
w

In view of the uncertainties, the simplest form of interaction curve is

likely to be adequate, and this is a simple square diagram as shown in Fig. II 22(d).

Here the coordinates are M/Mp and Q/Q where Mp and Qp are strengths in pure bending

and pure shear, respectively; Q is the yield stress in shear o /2 times the effective

cross-section area1 which can be taken as the total area for a rectangle and the web

area for an I beam. Deformations can be assumed to be governed by the condition of

normality to the yield curve, as indicated by the arrows representing the strain rate

vector with components (Q'r, M pK) in Fig. II, 22(d).

Very few dynamic problems have been studied with inclusion of shear deformations

and an interaction between bending and shearing strength. Two solutions have been

given in which shear deformations have been computed on the basis of an interaction

theory. Karunes and Onat (1960) worked out the ca of a free-free beam initially at

I
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rest which is sltruck transversely at its mid-point by a concentrated force which

caus.es the struck point to move .zith constant velocity V. This problem was studied

by Symonds and Leth (1954) ignoring shear deformations. The shear loading is very

severe; if only bending deformations are taken into account the shear

force on each side of the struck section is proportional to /V/t . The treai

by Karunes and Onat therefore starts with pure shear deformation (sliding) of an

element at the struck point. If the beam is sufficiently short, for a given material

and section shape, only sliding occurs (Fig. II 2J(a)); this requires

< 4 (5.2)M -

p

When the above concition is satisfied very large shear deformations can occur with

I zero be-nding, as shown in Fig. 11 24 by the curve marked "Shearing Deformatior'

If the bending strength is reduced, so thatO L/M 4 4, then bending dcformations

occur together with shearing; the two ranges of OL/M are indicated in Fig. II 23(h)

P p

and (c). The curve labeled "Bending Deformation" in Fig. I 24 shows the final

2deformation angle as function of Q L/M . The straight line at M 6 /lV= 0.425 is
P p p f

the result predicted by the analysis neglecting shear deformations.

This is a problem in which extremely severe shear loads occur, and in whicn

the large shear forces and deformations occur at cross-sections vwhere the bending

moment is large and bending deformations take place. The curves of Fig. II 24 show

that the analysis neglecting shearing deformations overestimates the main bending

deformation by an amount less than 20 pqr cent it Q pL/Mp is less than about 10.. For

rectangular sections this requires quite short beams, since Q pI/M = 2L/h; serious
SPp

shear effects would require L/h < 5. However, for 1-- or box-section beams a

46 comparable influence of shear defcrynation would occur for much larger span-depti|

i
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0 MW

ratios. For these sections, Qp L/M is of the order of 2-Y A wL/I- Ah = A L/Ah, where

Aw is the web area, A the total section area. Since A w/A can be quite small - about

1/q for an SWF4O - a minimum L/h of as much as 30 to 40 may be demanded, in order I
to keep the influence of shear on bending deformations less than about 20 per cent.

As mentioned, the cap cz:,cidered by Karunes and Onat is a particularly

severe one in regard to shear effects. The problem first treated by Salvadori

and Weiclinger (1957) and later extended by Nonaka and Symonds (1967) is perhaps more

typical of practical cases. Salvadori and Weidlinger considered a simply supported
-t/T

rigid-perfectly plastic beam subjected to a uniformly distriLuted loading P = P e
C

and showed that the beam may deform plastically by developing plastic slides at the

supports and a plastic hinge at the mid-span. Here the maximum shear force comes at

sections where the bending moment is zero, and vice versa. The square interaction

curve of Fig. II 22(d) is appropriately used. In the above solutior it is assumed

that the plastic hinge at the midspan does not spread, whereas in the treatment

presented by honaka and Symonds this phenomenon is included in the analysis. Also

comparisons are made between deformations produced by an exponential and a rectangular

load pulse and impulsive loading.

No deformation occurs unless the applied load P is of a sufficient magnitude

to cause the maximum moment M to occur at the midspan or the maximum shear F-i-cep

Qp at the supports. For a beam stronger in shear, bending takes place at a central

plastic hinge for P > 4M /L; correspondingly, for a beam stronger in bending than shear,

deformation occurs as shear slides at the supports for P > 20 . The magnitudes
-- p

of final deformations are functions of the parameters v = Ps/Pb = 0 L/2M and 1.'

P0/Pb = P0 L/4M where Ps = 2Q is the collapse load in shear and Pb 4M /L is the

collapse load in bending.

It develops that motion may start in any of five different modes depending on

A''
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the values of v and Vo. The mode shapes and the limiting values of v and v for each

particular mode are illustrated in Fig. IT '5. it Is noted that for v < 1 yieldinri

shear only takes place and the maximum bending moment in the beam does not reach MF1

regardless of the magnitude of the load. However, for v > 1 mixed modes of shear slides

and a central hinge or plastic zone may occur depending on the values of v and u . As

the value of p.o tends to infinity, i.e. impulsive loading, shear motion always occurs.

Types (E) and (:5) motions were not considered by Salvadori and Weidlinger. The latter

type of motion and type (A) motion, i.e. pure bending only, have been analyL0d in detail

by Symonds (1954).

In Fig. I1, 26 are shown curves of final mid-point deflection relative to the

support points for three different lodid pulse shapes, and with v as parameter. In all

cases the total impulse is the same. We see that in the case of the rectangular pulse,

for Lo greater than 10, the mid-point deflection is practically independent of U and0 0
takes approximately 90 per cent of its limiting value of impulsive loading. For a

corresponding exponential pulse load, i.e. with the same impulse and peak load, smaller

deformations are produced and this is explained by the fact that deformation is complete

before the end of the exponential pulse while for the rectangular pulse the whole impulse

affects the deformation. This difference becomes more significant for small values of

u For a given pulse shape, a sinple curve of ý.I 6/- arainst U aoolie.

S f or a 1 1 v > 1.5. It is noted also from Fig.TI 26 that for certain values of

v < 1 the deformation caused by shear motion alone exceeds that of the other types of

motion. This fact is better illustrated by plotting deformation values against v with

p o as parameter as in Fig.1I 27. We see that for any particular load, deformation

is a minimum at v 1 .0, greitest for v < 0.7• approximately, and constant for

v > 1.5. The deformation modes are lettered and indicated by the dotted lines in

Fig. I 2"7 Figs. II 25 and i1 27 are reproduced from Nonaka and Symonds (1967).

I
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It has been mentioned that Salvadori and Weidlinger considered

Type (D) motion only. A qualitative difference appears when this assumption

of a single bending hinge at the center is made, instead of considering finite

plastic zoncs at the center. instead of there being one deformation-load curve

for all v > 1.5 (for given pulse shape), as found in the complete solution, when

the single-hinge approximdtion is made different curves are obtained for dif--

ferent values of v, when po exceeds a certain magnitude. In rig. II 26 theI0"single hinge" curves are drawn for the limiting case v -, for the two pulse

shapes considered. It is seen that the q4antitive error of the single hinge

approximation is small.

To sum up, whether or not shear deformations are important depends

mainly on the magnitude of v = Q pL/2M p. If v >1.5, the presence of shear

deformations has a negligible effect on the major deflections. For a range

of v between about 0.8 and 1.5 the shear deformation results in smaller deflec-

tions, but for v smaller tian about 0.8, the deflections are larger than precicted

by the theory for bending deformation only (shear strenfth taken as infinite).

For a rectangular or other compact section v I L/h and shear deforma-

tions are unimportant. For box and I sections, however, v 1i smaller; for ex-

amplev = L/7h for an U ý:F 40 secticn. [For such sections, shear deformations can

be important if the span is less than about 10 times the depth.

(B) Moment-Axial Force Interaction

The above discussion considered situations where shear forces were

large but axial forces N1 were zero or at least very small. However, in practical

problems of dynamic loading causing large deformations, axial forces must of-ten

be considered; they may play the principal role in determining the load-deformation

characteristic of the structure. Consider' a bteam whose ends are fully constrained

and which is subjected to a transverse pressure of high initial intensity. Neglect-

!ng effects of shearing defor-mation, suppose the loading can he approximated as of

impulsive type;

46-
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the pressure imparts an initial velocity V to the whole beam. The initial response of

3the beam is one of cl"a÷tc bending:but if V is sufficiently large, plastic deformations

much larger than those in the elastic range will be produced. This problem was analyzed

I by Symonds and Mentel (1958). Assuming a rectangular cross-section the interaction

between bending moment M and axial force N was taken as follows:

IMI N2
+- - N- = 1 (5.3)

H 2
p N

I "Deformations generally are a combination of axial extension c at the centroid of the

cross-section and curvature K of the center line. The rates " , (or increments) of

these quantities are related by

N£N-. ~~Po_. 2 N ( 4

M K p
p

I With these relations, the rigid-plastic analysis can be carried out without difficulty

for the transition phase of the motion in which the initial bending response is replaced

by one in which both bending and axial extension occur. This analysis shows that when

the central deflection reaches a magnitude roughly equal to the depth h of the beam,

the axial force becomes equal to IN and the bending moment vanishes. For furtherP

deflections the beam behaves like a plastic string or membrane, carrying axial force

N without bending. The analysis of this phase of the response is complicated by the
p

need to satisfy the flow relation (5.'4). When N/N = I, C and ý must satisfy the
p 0

inequalities

-1/2 < N-E--- < 1 /2 (5.5)
-N P

Symonds and Mentel ignored this restriction resulting from the finite bendingI
I



-69-I
strength of the section: the beam is treated in the second phase like a plastic string

until the maximum deflection is reached, which is taken as the final deflection.

Deflections obtained in this way are bounded above by the deflection calculated assum-

ing plastic string behavior during the entire motion, rather than just the final

stage. They are bounded below by results of an analysis continuing (beyond its

proper range) the treatment for beam response with bending moment-axial force inter-

action. The curves shown in Fig. I I 28 show the final deflection according to the

complete (approximate) solution of reference, together with the upper and lower bound

Polutions just mentioned, and the simplest rigid-plastic solution in which axial

constraints are disregarded. These are for the case L/h = 20. It is seen that for a

beam as slender as this, the behavior resembles that of a string much more than that

of an unconstrained beam. Thus the end constraints against axial displacements have a

profound influence on the deformation.

The beam problem discussed above required consideration of axial forces as

a consequence of the growth of deflections to magnitudes as large or larger than the

beam depth. In other structures, such as arches, rings, and frames, axial forces are

required for equilibrium of the undeformed structure, and the interaction between

bending moment and axial force, and the relation between the corresponding deformation

rates must be taken into account from the start.

In the foregoing discussion of interactions of bending moment, shear, and

axial force in beams we have considered separately interactions between M and Q, and

between M and N. This has been expedient in order to estimate orders of magnitudes

of effects, and in view of the absence of true (local) interaction relations. How-

ever, it is worth mentioning that the problem of plastic interaction between the

three quantities M/Mp, Q/Qp, N/Np has been solved for the static loading of a

cantilever by an end force. As noted, the results certainly do not apply quantita-
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tively even to other cases of static loading, but may give qualitative indications of

the importance of the interactions. The full interaction problem for a beam of

rectangular section was solved by Neal (1961b). Previously it had been shown

(Drucker (1956)) that a good approximate interaction relation between f and Q is

equation(5.1;

M lp 4
IP

Neal's results showed that an equally good approximate formula could be used when

N/N is also taken intc account, namely by replacing in the above equation
p

SM M 1. • - - ~ b y MN
p p 1-N 2

- N
J2 p

Q by 0
2 2oP p N2

p

The suggested formula is

M 1 + Q 1 (5.6)
S _ 2 2
p N

2
N N
p p

Some of the interaction curves for constant N/N are shown in Fig. II 22(a).
p

"For I-sections no such simple approximate formula can be given but Neal

succeeded in oLtaining lower bound curves. These are presented in the form of the

surface drawn in isometric projection in Fig. II 29. The results are for an 8WF40

] section.

1



FigureCaptions for Chapter II

Fivure Caption

II I Problem solved as example of dynamic elastic-plastic
analysis by normal modes: uniform simply-supported beam
with initial velocity varying as half sine wave.

11 2 Idealized elastic-perfectly plastic moment-curvature
relation used in illustrative problem.

Ii 3 Deflection pattern with plastic hinge at midpoint.

II 4 Slope angle at midpoint as function of dimensionless time I
n' and S = ratio of initial kinetic energy to maximum
elastic strain energy capacity of beam. Normal mode
solution is valid up to point of first maximum. (From
Seiler, Cotter, and Symonds, 1956)

II 5 Plots of bending moment over half-snan at two times n'
and four magnitudes of enerpgy ratio S. (From Seiler,
Cotter, and Symonds, 1956)

II 6 Terminology for finite-difference treatment of Baron, Bleich
and Weidlinger (1961).

II 7 Simple spring-mass model. P(t) is external load.

II 8 Rectangular load pulse of intensity P o duration T.

II 9 Assumed linear elastic-perfectly plastic "sprinp characteris-
tic": Q•- "yield load" or "static collapse load", x I
"yield deflection". y

II 10 Relation between time of yield t and load ratio P P /0

when yield occurs during load duration interval (t -

II11 Ddependence of final plastic deformation on load ratio
) * P/Q calculated by elastic-plastic analysis (x ) and
rigidzpl~stic analysis (x '), for several ratios of rload
duration T to elastic period T.

II 12 Error of rigid-plastic analysis as function of energv
ratio R' = QyX '/½QyXy, for various load duration ratios Y/T.

II 13 Error of rigid-plastic analysis as function of load duration
ratio T/T, for various load magnitude ratios U = P /0

0 y
II 14 Illustrative problem for deflection estimate: simply-supported

beam with uniformly distributed load P.

II 15 Deflection configuration, illustrative problem for deflection
estimate.

II 16 Mass-sprinp model with two deprees of freedom, example (A).
Load of impulsive type is applied to one mass Riving initial
velocity V .

o



I1 17 Final plastic deflections of two-depree-of-freedom model,
example (A).

3 II 18 Sequence of elastic and plastic deformations in example (A).
At a given value of energy ratio R (or of n) the curves show
times when plastic deformations start and ston in the two
springs.

II 19 Illustrative prvblem of uniform pressure on simply suonorted
beam, example (B); elastic-plastic solutions from Baron,
Bleich, and Weidlinger (1961); rigid-plastic solution from4 Symonds (1954).

I 20 Illustrative problem of cantilever beam subjected to impact
at its base, example (C). Elastic-plastic numerical solu-
tion from Alverson (1958); rigid-nlastic solution from Green
(1954). (a) shows final angle of rotation at base as func-
tion of dimensionless acceleration parameter. (b) shows
notation and locations of typical "+" and "-" plastic defor-
mation.

I 21 Patterns of plastic deformation of cantilever with base
impact, example (C) from Alverson (1958), symbols "+" and
"-" refer to concave downward and concave upward curvatures,
respectively, as in Pip. II 20 (b). Vertical line indicates
occurrence of plastic flow at the corresponding cross section.3. Solution was obtained by numerical integration of finite difference equations based on grid of characteristics, with 20segments along beam.

I II 22 Interaction diagrams: solutions from limit analysis for
bending moment M, shear force Q, and normal force N at base of
an end-loaded cantilever. M , 0 , N are limit (fully plastic)
magnitudes for corresponding individual load.

(a) Rectangular section. Full curve for N = 0 from Drucker
(1956); dashed curves for N > 0 from Neal (1961b).

(b) and (c) Curves for typical I-section (EWF40). Sharp
drop in M occurs at 0 = Ow = approximately web area
times yield stress in shear. (From Neal (1961a).

(d) Simplified interaction diagram assumed for use in dynamic
problems. For I-section 0O is taken as Ow, as indicated

for (b).

I1 23 Problem of shear deformation of free-free beam treated by
Karunes and Onat (1960).

II 24 Curves showing shear and bending deformations, adapted from
Karunes and Onat (1960).

II 25 Types of initial deformation of simply supported beam underSuniformly distributed load with initial magnitude P P(0 ),
showing dependence on parameters of load magnitude M. and of
shear strength v. (From Nonaka and Symonds, 1967)I

4



II 26 Comparison of final midpoint deflection as function of
load magnitude at constant impulse I for rectanpular pulse,
exponentially decreasing pulse, and impulsive load (initial
velocity). Solution for "single hinge bending only" for
exponentld.l iuaelnip, was given by Galvaduu and Wel nMisp'er %1M57).

II 27 Dependence of final midpoint deflection at constant impulse
on shear strength parameter v, for various load magnitudes. 1
Dashed lines separate regions of initial deformation pattern

as shown in Fig. II 25. (From Nonaka and Symonds, 1967).

Ii 28 Deflection curves showing large influence of constraints
against axial motion, from Symonds and Mentel (3.958).

II 29 Approximate interaction between bending moment M, shearing
force Q and axial force N for an I-section, plotted in an
isometric diagram, from B. 0. Neal, Report NNS/12, October,
1961, Brown University to Norfolk Naval. Shipyard, Underwater
Explosions Research Division.
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Chapter III

EXPERIMENTS ON BEAMS

Introduction

Since the beginnings of the modern interest in plastic deformation of

structure" tinder dynamic load, remarkably few experimental investigations on

beams have been carried out. This is surprising, since a beam is a simple but

in many ways highly representative structural element. Considerable test work

has been done on more complex structures (protective structures, naval and

space vessels, etc.) as an aid in design, but much of this has been done on

a. ad hoc basis without time to explore detailed relations between theory and

test results. On the other hand, engineering scientists involved in basic

r'esrch have devoted a large amount of effort to investigations, both

theoretical and experimental, of longitudinal plastic wave propagation in rods.

This is natural, since the theory of uniaxial stress waves is highly developed;

if transverse inertia is neglected and an invariant stress-strain relation is

employed, an exact elastic-plastic solution is obtainable in principle for

arbitrary initial and end conditions, and for arbitrarily large strains.

Similarly, a large amount of work has been done on plane waves, i.e. waves

of uniaxial strain, in media with large dimensions transverse to the direction

of propagations. Analyses based on invariant stress-strain relations are

obviously suspect, in view of the rate dependence observed in many experiments

as summarized in Chapter I. Wave experiments have unfortunately not y.t been

successful in resolving questions of dynamic stress-strain relations. There

are basic disagr'eements about the wave tests and their interpretation; see

for example Karnes and Ripperger (196'), Bell .1966), and Kolsky (1966).
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The number of experimental investigations published on plastic

deformations of beams under impact, blast, or other dynamic loads is a small

3 fraction of the number published on longitudinal waves. The experiments on

beams do show a certe' n degree of consistency in the general conclusions

Li drawn from them. The summary below will try to point out these points of

general agreement, but will also indicate the areas where experimental work

I has been neglected or is inconclusive.

I The principal experimental investigations, which will be studied

in what follows, are sk~mmarized in Table III I.

We will not describe in detail the experimental investigations

listed in Table 11 1, but instead will attempt first to summarize the main

results, show comparisons with various theoretical predictions, and then give

I some overall conclusions. The list of investigations is certainly not an

exhaustive one, and a few other experimental studies on beams will be

mentioned below at appropriate places. The i.ost valuable investigations

are those in which important parameters were varied through wide range,

I
1. Tests of k)uw-e,? Clarý and Bor'nenblust (1950)

J •This investigation was concerned with impact of a mass on a long

beam, the problem being that solved by Bohnenblust and discussed in Chapter I,

I Section 2. The autuors compared the deflection curve (obtained by high speed

Sphotography) and the plastic and elastic deformations determined from it with

the corresponding quantities calculated from Bohnenblust's general elastic-

3 plastic theory and from a purely elastic theory. Both theories, it should be

remembered, apply strictly to infinite beams and to constant velocity impact.I
I
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Table 111 1

Type of Main
Investigators Specimens Loading Interest

Type of Support
NMaterials Dimensions

1. Duwez, Clark Cold-rolled Simple support Impact by Comparison
and Bohnenblust steel; length 10 ft. heavy with general
(1950). copper. depth 1 in. hammer; elastic-plastic

width 3/8 in. controlled theory of in-
contact finite beams.
duration.

2. Parkes Steel, brass Cantilevers Impact by Comparison with
(1955, 1956, duralumin. simple support hammer or rigid-plastic
1958). lengths 2 in.- by lead theory,

12 in. bullet.
depth 1/4 in.
width 1/4 in.

3. Mentel (1958) Steel Cantilevers Impact on Comparison with
Bodner and Al alloy with tip mass, base; im- rigid-plastic
Symonds (1962). 6061-T6 lengths 2 in.- pulse at theory.

12 in. tip mass
depth .12 in. from ex-
width .3 in. plosive

charge or
bullet en-
tering tip

q. Florence and Steel CRI018 Simple and Sheet Corparison with
Firth (1966) A! alloy fixed-cndcd explosive r ',id-piastic

2024-TL, supports. placed on theory.
6061-T6 length 18 in. the surface

depth 1/4 in. of the beam
width 1 in.
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3 The horizontal beam specimens (10 ft. by 3/8 in. wide by 1 in. deep)

were supported at their ends by pins allowing rotations and horizontal displacements,

"3 land were struck at their center by a vertically moving hammer weighing 5-3/4 lb.

accelerated by rubber bands to the desired velocity of impact (in the range 25 ft.

per see. to 150 ft. per sec.). The hammer struck a set of anvils a certain

distance below the top of the beam, and at the instant of striking the anvils

closed a circuit which fired an electric discharge tube and thus photographed a

ST white line drawn on the beam. The various desired impact durations were

controlled by the distance of the anvils below the top of the beam; the anvils

'" pcrmitted further downward motion of the specimen beams as a result of their

inertia. Cold-rolled steel and annealed copper beams were tested. The appropriate

bending moment-curvature curves were determined by computation from measured

r •stress-strain curves for tension and compression.

For the cold-rolled steel beams the bending moment increases slowly

I T with curvature beyond the plastic range and the curve is quite well approximated

by an elastic line and a horizontal plastic line. The derived curve for the test

specimens and the bilinear approximate curve are shown in Fig. III I (b). The

plastic moment is taken as 8000 in.-lb. in the calculations. Fig. IIi 1 shows

a summary of typical results for cold-rolled steel specimens. Fig. III 1 (a)

shows a i-ypical deflection curve together with calculated deflection curves based

on Bohnenblust's elastic-plastic analysis and on the same type of treatment

without consideration of plastic strains. Figs. III 1 (d) and (e) show the results

of a series of tests made with common impact velocity of 100 fps, adjusting the

anvils so as to obtain different impact times. These figures show that the

angle of deformation 0 at the struck point and the point of zero deflection x

vary with (time)I/2 in an approximately linear manner. The numerical agreement

"- of the 8 valt"es with the theoretical elastic-plastic curve of 8 vs. /t is quite
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good, a~lthough the ts .points (shown in Fig. 711I ( - - - - fa!! below -

the theoretical curve at larger values of rt. As far as the zero-deflection

point x is concerned, the results are completely anomalous. In Fig. III 1 (e)
0

the test points are shown by circles, and the x - r curves predicted by

various theories are drawn, the solid line being the curve predicted by

Bohnenblust's elastic-plastic theory. The broken lines, as marked, are for the

elastic beam corresponding to Bohnenblust's theory, and the most elementary

rigid-plastic theory (discussed more fully below), both assuming that the

striking mass maintains constant velocity. These two curves almost coincide,

and they show much better agreement with the test results than does the curve

deduced from the elastic-plastic treatment, which should be the most realistic

theory. The agreement with respect to the zero deflection point between the

rigid-plastic and wholly elastic theories suggests that the agreement of either

of these with test results is fortuitous, and gives no indication as to the

reliability of either thecry in other situations.

The angle of rotation 6 at the struck point is shown in Fig. III I

(c) as a function of striker velocity V , the test points again shown by0

circles and results predicted by Bohnenblust's elastic-plastic theory by

the solid curve. Evidently Fdmenblust's theory predicts the plastic deformation

angles well at the smaller striker velocities, but overestimates the plastic

deformation by' roughly 35 percent at the highest velocity (150 ft. per. sec.)

In sum, the tests by Duwez, Clark and Bohnenblust (1950) show that

for cold-rolled steel beams

(a) Bohnenblust's elastic-plastic theory predicts the plastic

deformation angles, as function of impact velocity at constant

impact duration time, with good accuracy over the lower part

of the velocity raige, but overestimates this quantity at the

highest velocity by about 35 percent.
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(b) Bohnenblust's elastic-plastic theory predicts the increase ofL

angle of plastic deformation wth time (t constant impact

velocity) with good accuracy, although the theory overestimates

this angle at the largest deformation values by about 10 percent.

(c) Tht shape of the deflected beam is reasonably well predicted

by Bohnenblust's theory. The spread of deformation as a

function of time may be studied by examining the coordinate x

A of the point where the deflection curve crosses the zero-deflection

axis closest to the impact section; the predicted rclation

x = constant r- agrees well qualitatively with the results0

observed in the tests.

What conclusions can be drawn from the results summarized above?

"Agreement between theory and tests" should mean that the approxi-

mations and hypotheses on which the thaoretical predictions were based

* ! are valid- excluding, of course, the possibility that a seriously incorrect

assumption or approximation was cancelled out by some phenomenon which played

a role in the tests but was omitted from consideration in the theory.

In the present case, the major assumptions and approximations in

Bohnenblust's theory of elastic-plastic beam impact are as follows:

(I) The Bohnenblust form of solution applies only to constant

velocity impact on a beam of infinite length.

(2) Rotary inertia and shear deflections (elastic and plastic)

are neglected; in the elastic range the differential equa-

tions are those of the elementary Bernoulli-Euler beam theory.

(3) The basic material characteristics - j curve relating bending

moment to curvature - are invariant properties of the material

"and the given beam section; in particular there is no depen-

dence on the current strain rate or on the history of deforma-
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tion rates.

(4) In applying the theory to the test specimens further approxi-

mations regarding material behavior are made, in that the

moment-curvature relation was approximately represented by

two straight lines; plastic behavior was represented in the

case of the cold-rolled steel by a horizontal line (as in

Fig. III 1 (b), and in the case of copper by a straight line

at an angle with the strain axis. In both case a Bauschinper

effect was assumed such that a constant elastic range exists

(kinematic strain hardening)

The most important discrepancies between test results and theoretical

predictions are probably those between measured and predicted plastic rotation

angles at high impact velocities. The experiments must be examined to try

to determine which of the listed sources of error is responsible for the

observed discrepancies. This implies (in the absence of further experimentation)

the need for reasonable estimates of corrections corresponding to the listed

sources of error.

Rigid-plastic analysis provides a means by which some of these

estimates can be made very easily. Whethe- or not a rigid-plastic analysis

is appropriate, it seems reasonable to suppose that the qualitative

importance of the correction (ue to plastic shear deformation, for example,

is roughly the same for both the rigid-plastic and elastic-plastic treatments.

We shall illustrate this use of plastic-rigid analysis in the present

p-roblem. We give first the result of the simplest possible model of the

Duwez-¢C.ýrk-&Bhnenblu3T experiment. This is the case of an infinite beam of

rigid-plastic material, struck a-z one section by a mass so large that its

velocity remains unchanged; the beam is supposed to undergo plastic deformation

in bending only (shear deformations neglected), to have negligible rotary
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inertia, and to exhibit ially lasi- c be-avior, without strain rate eftects

I on strain hardening. Thm results of this simplest rigid-plastic model are then

compared with those obtained for models which are made successively more

realistic by taking account of

S1 (A) finite striking mass

(B) shear deformation

I (C) strain rate sensitivity

Estimates of other effects such as of rotary inertia of the beam section,

strain hardening, and finite deflections, could also be obtained as modifications

of the elementary rigid-plastic treatment, but the calculations are more

inuolved and only a few remarks will be made about these.

The rigid-plastic solutions are obtained from the diagrams of

Fig. 111 3. Sketch (b) of this figure represents the mechanism of deformation

. .appropriate when the material is perfectly plastic, with a constant plastic

r limit moment MN. As shown in (b) and (d), at the struck point there is a

plastic hinge with moment t M (assumed unaffected by the shear stress).P

In a segment OH of length z the bending moment changes from + M to -M
P p

The shear force vanishes and the bending moment has the :onstanr value -M

at H and at all sections to the right of H. This moment diagram (d) corresponds

to the velocity diagram (c), which shows velocities of beam cross-sections

proportional to distance from point H in the segment OH; this segment must

move as a rigid body since the bending moment has mapnitude IMI c M inside
p

OH. To the right of H the beam is at rest.

- In the "simplest solution" the impacting mass G is taken to be so

llarge compared with the mass of the beam which is set in motion that its

velocity remains unchanged at the striking velocity V . Neglecting shear0

deformations in the beam, the velocity of the beam at the struck cross-section

is likewise constant at V . Thus the only unknown quantity of the deformingo
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beam is the length z. This can be found by the equation of c..servatlon of

moment of momentum about an axis at C:

1 3

2M t xw(z -x) mdx : mz w (1.i)

where w is the angular velocity of segment OH, and m is the mass per unit

length of the beam. Since in the case of constant velocity impact w V /z,

the result for z is

2 12M t

mV
0

The plot of z vs.t according to the above equation is shown in Fig. I11 1 (e)

for the cold rolled steel specimens tested by Duwez et al at V 1= 00 ft/sec.

The agreement with the experimental values of x (the beam coordinate where
0

the deflection curve crosses the horizontal axis closest to the impact point)

is remarkable but seems of little significance. The angle of deformation at

the impact point is

t M 2 Z v 3
6 wdt .= (1.2)

p p

The central angle from Equation(l.2)is shown in Fig. III 2 as curve D, plotting

e versus V for constant impact duration time 1.22 x 10 sec., using the data
0

for the cold-rolled steel beam specimens of Duwez et al (1950). The results

from Equation (1.2)agree badly with the measured values in the tests, being

too large by a factor between 2 and 3. This is not surprising; apart from

the corrections to be discussed, we have no reason to expect close agreement

between predictions of a rigid-plastic theory and the test results (the ratio

of plastic work to maximum elastic strain energy is approximately one, for

the data of the test results shown in Fig. III 2). We may, bowever, now use

the simple rigid-plastic analysis just given as a basis for estimating the
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relative importance of many of the physical assumptions made, and take the

results as indicative of the relative importance of the same effect,- in

Bohnenblust's elastic-plastic theory.

(A) Finite mass. If the striking body has mass G, but is assumed

to have the same velocity V(t) as the struck section of the beam, the equation

of momentum of momentum Equation(l.l)must be supplemented by that of linear

momentum in order to determine the additional unknown V(t):

GV = GV + mz V (1.3)
0

Using V wz, the following equations are obtained for V, z, and 8

V V 12M mt
2 - = p + 2 (l.4a)

0 G 0

2 12M t

Cmz mV
M =z __ ._ (1.4b) i

mV2 z 1 + Cmz
.m-- (1.4c)

. p (1 i -•)

S : The central angle 8 as function of V according to Equation (l.Uc) in plotted

as curve C in Fig. 1i1 2, taking t = 1.22 x 10.3 sec., and the data for G,

m, etc. as given for the tests on cold rolled steel beams of Duwez et al (1950).

For an initial velocity of 1.200 in/sec at t = 1.22 x 10.3 sec., Equation (l.4a)

gives the result V/V = 0.71. Thus the reduction of striker velocity is

appreciable even in the first millisecond for a weight 5 bD. striking a 10 ft

*. long beam of 3/8 in. and depth 1 in., and the angle of deformation is about

two-thirds that which is predicted if the striker is assumed to move with

"unchanged velocity.

(B) Shear deformation. The rigid-plastic analyses outlined above,

J as well as Bohnenblust's analysis, took the shear forces in the beam as

I
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reaction forces (doing no work), and disregarded the fact that the shear force

at the struck sections is infinite initially. This result is due in part to

treating the beam as a one-dimensional continuum without cross-sectional

deformation due to shear or compression, and also in part to assuming that the

struck portion of the beam instantaneously acquires the velocity of the

striker. Since these are common assumptions in conventional beam theory, it

is of interest to obtain the correction for shear deformation alone in the

plastic-rigid theory.

This simple treatment of shear deformation to be outlined takes the

square interaction curve of Fig. II 22 (d) as an adequate approximation. At

a cross-section where Q = Qp a shear slide is permitted, (corresponding to a

plastic hinge for bending); a jump in transverse velocity of the beam across

the slide section must have a sign agreeing with the shear force directions so

that positive work is done. In the present problem we write the velocity of

the striker as V' while the velocity of each adjacent section is V. During

a period after the mass strikes, the shear force at the struck section is Q

and Vt - V > 0. At this section the fully plastic bending moment M is assumed
p

to act, without interaction between shear force and bending moment, as in the

case treated by Karunes and Onat (1960) outlined above (see Fig. II 23). The

equation of linear momentum replacing Equation (1.3) is

GV = GV' + mzV (1.5)

Since the shear force at the struck section now has the known value Q the

2inear imprlse-momentum equation for the half-beam is

Qpt = mVz (1.6)
p 2

The previously written equation of angular impulse-moment of momentum still

applies, and V = wz, so that II
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M t m -Z 2~7
S ( mVz

p

V - 'V V 2 (p + Q1 t (l. P)
o G 3mrM

V 3t
Pv ( O.c)

Z 1SmM2

P

Note that the hinge coordinate z is constant in this phase. The shearing

r deformation is completed in a time t determined from Equation (l.8b) by

setting V - V' = 0. At later times the momentum conservation equations apply

f •in their previously used forms, and the deformations are easily found by

integrating beyond time t s. The central angle of rotation computed at

t = 1.22 x 10-3 sec. is shown as curve B in Fig. III 2. It is seen that

I with account taken of shearing deformation there is a further reduction of

the central angle below that of curve C. The original large discrepancy

between the test results and the angles predicted by the simplest rigid-

plastic theory has been largely removed by the analysis taking account of

the fihite striker mass and shear deformations.

(C) Strain rate. Ezra (1958) has given an approximate treatment

of effects of strain rate sensitivity in Duwez, Clark, and Bohnenblust's

tests. We will discuss later in more detail the inclusion of strain rate

sensitivity in impact problems. It will suffice here to say that Ezra's

analysis introduced a corrected dynamic plastic bending moment corresponding

to estimate average strain rates at the plastic hinges at successive stages

of the deformation. The plastic hinges were assumed to be located at the same

cross-sections as predicted by the solution for non-rate sensitive rigid-

plastic material, an' - ins and strain rates estimated at each hinge by

LI
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a,.suming the length of the plastic hinge to be equal to the depth of the

l'eam. At each step, having computed the strain rate the plastic hinge

morent was determined so as to agree with the dynamic yield stress values

measured by Manjoine (1944) as a function of strain rate. UsJng the new value

of hinge moment the rotations and angular velocities across hinges were

recomputed. The hinge moments were again revised, and the cycle repeated

until a steady state was reached. It was arbitrarily assumed that the dynamic

plastic moments were the same at all hinges. The resulting curve calculated

by Ezra in this way is shown as curve (E) in Fig. III 2. Ezra's calculation

takes account of tI'e change in velocity of the striker but not of the shear

deformation, and thus his curve (E) should be compared with curve (B);

presumably the inclusion of shear deformation would result in an additional

reduction of the final deformation angle. Ezra's curve agrees very well with

test points up to about 100 ft per sec, but lies below the test values above

this velocity. Apparently his method over-corrects for strain rate sensitivity

in this range. However, it should be remembered that the validity of

neglecting elastic deformations in this problem is questionable, as already

pointed out, since the amount of plastic work is comparable to that of the

maximum elastic rtrafn ene-ry. ?--eo .. trnir rat•? j.S-•t '1•v of ti.o

mild steel tested by Manjoinewas probably considerably greater than that of

the cold-rolled steel of the present tests. (See Chapter I, Section 5; some

tests have shown negligible strain rate sensitivity for a cold-rolled steel).

It is remarkable that curves (B) and (E) lie as close as they do to the test

points, but the real interest of the various curves in Fig. !I1 2 is in the

comparison between the curves derived from rigid-plastic theory which enable

one to estimate possible corrections from various sources to the Bohnenblust

treatment. There is no doubt about the need for such corrections: the striking

mass is finite and its velocity must decrease; the shear force cannot attain

It



infinite magnitudes; and mild steel exhibits a considerable increase of yield

Strength at the strain rates met with in Duwez, Clark and Bohnenblust's tests.

Whether the corrections for these physical effects obtained by considering

3 rigid-plastic behavior are quantitatively applicable to the elastic-plastic

treatment is not certain; however there seems no way of modifying Bohnenblust's

I' analysis so as to obtain them.

In beam impact experiments in which final deflections considerably

larger than the beam depth are produced, with ends constrained against axial

motion, account must be taken of axial forces, as was pointed out. Experiments

designed specifically to investigate this effect in combination with rate sen-

2 sitivity have been carried out by Nonaka (1964). These confirmed the conclusion

-• reached analytically by Nonaka (and previously by Symonds and Mentel (1958)),

"that membrane effects predominate over bending, with deflections a few multiples

of the beam depth.

2. Parkes's experiments.

Parkes's(1955) tests were the first conducted on structures for the

specific purpose of assessing the validity of a rigid-plastic analysis. These

tests were performed on small cantilever beams of mild steel struck near the

* tin 1-- falling welgl-tL or, by rifie bullets. Subsequently results of further

tests were published (Parkes 1956, 1958) in which beams clamped at both ends

were struck by moving masses, the specimens in these tests being steel, brass

and duralumin. The beam ends were constrained so as to prevent rotation but

"- allow axial motions so as to freely accommodate the transverse deflections.

The basic conditions of these tests are as listed in Table III 2.

Table III 2

"Parkes'sTest Conditions

"(A) Cantilever beam specimens

Lengths: 2 in, 4 in, 8 in, 12 in.
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Cross-section: 1/4 in square (nominal)

Striker masses and veiocities: TV

' Heavy 1 lb at 12.7 ft/sec and 18.0 ft/sec

strikers 4 lb at 6.4 ft/sec and 9.0 ft/scc

Light .0043 lb at 970 ft/sec
strikers .0050 lb at 1580 ft/sec

Beam material; mild steel
static plastic moment 195 lb-in

(B) Fixed-end beam specimens

Lengths: L = 2 in, L1 2 in, 4 in, 10 in.
21

S2 = I in, L1I in, 2 in, 5 in.

L2 = 6 in, L1 6 in.

Cross-section: 1/4 in square (nominal)

Striker masses and velocities:

Heavy 4 lb at 19.4 ft/sec
strikers 16 lb at 9.7 ft/sec

Light .0050 lb at 1500 ft/sec
strikers

Beam materials and static plastic moments:
mild steel and brass: both 228 lb-in;
duralumin: 256 lb-in.

The main objective of Parkes's tests was to fin,' whether a rigid

perfectly plastic analysis assuming a constant plastic moment could accurately

predict final deformations, the appropriate dynamic value of the plastic

I moment being computed from estimates of average strain rates in the tests

and published data concerning the dependence of yield stress on strain rate,

The main conclusion reached was that such an analysis predicted shapes and

J magnitudes with good accuracy in the cases of beams struck by large masses,

but gave poor predictions in the case of low mass-high velocity impact.

I (A) Cantilever: The analysis for the rigid-perfectly plastic

I-
1|
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I cantilever is very simple, and follows directly from the pattern of deformation

discussed above for the infinite beam struck by a mass. Let us assume, as

Parkes did, that the striker with velocity V transverse to the beam becomes0

instantaneously attached to the beam at t = 0, has mass G and negligible

centroidal moment of inertia. Shear deformations, strain rate sensit-ivty,

and strain hardening, will all be neglected, for the present, although as

Swill be seen some of these may be important in some cases. The plastic

moment Mp is taken as a constant property of the section. Consider the cantilever

I beam case, Fig. III 5. There are two phases of deformation. In the first

- phase there is a segment of length z(t) in motion as a rigid body with

angular velocity w(z) = V/z. Ahead of the deforming segment the beam is at

r rest but has constant bending moment -M and zero shear force. Plastic

deformation at an arbitrary cross-section at a distance x from the struck

I end occurs when z = x, i.e. when the hinge point passes through the section

at x. The resilting curvature is K(x) = W(x)/i(x).

Let e(x;z) denote the angle of rotation at a typical cross-section

at distance x from the tip, when the hinge section is at distance z from

the tip. All distances may be measured along the center line of the

deflected beam. The rotation angle at the tip is O(0;z) and the relative

rotation between the tip and the section at x is 6(O;z) - e(x;z).

I Under the assumptions stated, the work-energy balance is expressed

] by
SGV2 : M 8(0;z) + K(z) 

(2.1)
2 o p0 D

where K(z) is the kinetic energy of the beam when the hinge is at z,

K(z) _1 •GV2 + ImzV2 (2.2)
S2

4



FOr a beam of lcnrth L, further rotation e as a occurs after the
hinge section has reached the base. From the work-energy balance in this

second phase we havw

M 6 = K(L) GV2 - M 6(0,,) (2.3)p L 2 o p
The final angle of rotation at any section is therefore, since e(x,L)

e(O,L) - 0(O,x)

GV'
) W O(x;L) + 0 O(Ox) (2.4)

p
In particular,

6 (o) GV2 (2.5)f 2 o

This result for the final rotdtion angle at the beam tip is valid for

deflections of arbitrary magnitude, for a rigid-perfectly plastic material.

Although the final angle at the beam tip can be obtained for these
conditions by energy considerations alone, the angle at a generic cross-

section can only be found by the use also of equations of momentum

conservation. To obtain a simple solution we shall assume first that

deflections are small, and obtain the solution (derived somewhat differently)

by Parkes (1955). ror small deflections, conservation of linear and

angular momentum leads to the equations for the first phase:

GV = GV + mzV (2.6)o 2

1 mz2V = M t (2.7)

The tip velocity V and hinge position z are therefore determined by the

equations

I
a
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(V - 3mm t
o )2 (2.8a) I

V 2 G

2 6M t
z = -mp- (2.8b)

2G

The first phase ends at t t I when z L, and by Equations (2.2) and (2.6)

the kinetic energy at this instant is

Ge GV2  2
E a Ye 2 f 2 (2.10)2 1 GV p M (I+ 2

T 0

where E is the plastic work done in thv second phase divided by the initial
2

kinetic energy and 8 = mL/2G. In the first phase the plastic work ratio

£E = 1 - E If the tip mass is much larger than the beam mass most of the

plastic work is done in the second phase, i.e. in the base hinge rotation.

For example if G > 3mL, more than 80 percent of the initial energy goes into

the base hinge rotation.

In the first phase the curvature may be determined as K = w/=

dO(O;z)/dz, using Equations (2.1) and (2.2). An element at any fixed section

x acquires its curvature instantaneously when the plastic hinge reached it,

z x; and this curvature then remains constant. The result is

,i())2 1 1

G ;F1
(-X- 0 x. + •x2 (2.11)

* The displacement at any instant in the first phase can be derived by virtual

work (or otherwise) as

y(xjz) J,(s) (s-x)ds (2.12)

n u X

4 In particular, when z a L the displacement can be written as
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ir
Sy(x;L o (-) 3( -2 U 2 + + log (2.13)

* where

mL ~x
2I L

The total deflection is obtained by adding to y(x,L) the displacement

Iacquired in the second phase. Since this phase consists of a rotation 8LO

J the complete deflection is

y(x) = y(xL) + (L - x)8L (2.14)

where y(x;L) is given by Equation (2.13) and 6 L by Equation (2.10). For

J 0 + 0 (large tip mass) the contribution from y(x;L) vanishes as 0, and the

linear deflection (L - x)8L predominates.

(B) Discussion: Table III 3 gives a summary of Parkes' test

results with cantilever beams (Parkes (19551 and of results obtained from

the rigid-plastic theory summarized above. The deformation measured and

used for comparison was the angle of rotation at the base of the beam. In

all cf the tests there was a .,lasti.. hinge region at the base, comprising

a localized plastic deforrnation extending a distance of the order of one

inch (four times the depth) from the base. Beyond the hinge region the spec-

imens had a fairly straight seivnent, and the rotation angle was presumably

measured just outside the hinge. The tests with "heavy" strikers (specimens

C.l-C.16 in Table III 3) resulted in specimens that were essentially straight

except for the hinge region at the base. The tests with "light" strikers

(specimens C.17-C.24) were strongly curved near the tip of the beam.

I The experimental values of the rotation angle near the base

are shown in Table III 3, column (13). These are divided by the angle

predicted by the simple rigid-plastic theory to obtain the ratios listed in
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column (14) and plotted in Fig. III 6(a) for "heavy" strikers and Vig. 11:

3W 6(b) for "light" strikers. It is seen that for both sets of tests the ratio

is substantially below unity. The disagreement between experiment and theory

ranges from about thirty to fifty percelnt.

To explain the disagreement, Parkes suggested that the strain rate

sensitivity of the material must be considered, and made a semi-empirical

correction of the plastic moment taking into account the dependence of the

yield stress of mild steel on the rate of plastic straining. he will present

and discuss this correction shortly. Before doing so we raise the question

of strain hardening, which has also been ignored in the theory. Strains at

the base of the cantilevers were in the range of approximately 1.5 percent to

about 4 percent. (Measurements of strains are not cited in the paper, but

they can be roughly estimated from the rotation angle and the observed length

of the plastic region.) These are strain magnitudes in the region of

axppreciable strain hardening of steel. One may naturally ask; why not

attribute the discrepancy between experiment and theory to the neglect of

strain hardening?

An indication that strain hardening is not the source of the

discrepancy is given by the plot of Fig. I11 8. These are the results from

the tests C.l-C.16 using heavy strikers summarized in Table III 4. In

these tests, for each boam length and striker weight, two velocities were

used. Thus for each value of 0 there are two test results. In Fig. Iii 8

the pair of points corresponding to each 8 are joined by a line. The

ordinatm is the rotation angle observed in the tests. Now since strain

hardening is neglected in the analysis, the error due to this neglect

should depend on the amount of the straining. If the error is important

J it shoull show up in the comparison of test and theoretical results. In

a plot against angle of deformation (or strain) as in Fig. III 8, the!
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Seffect or strain hardening should cause the disagreement between test aind

*iheory to be greatest at tne larger deformations. Thus the ratio 0 exp/L

should decrease as 0L increases, The opposite cffect is observed in Fig. III

8; the lines joining the pairs of points with comtrlon slant up, rather than

down. This provides a strong indication that strain hardening is not

playing a major role in the discrepancy.

The better agreement of test results with elementary theory at

the larger strain magnitudes presumably is dn ii.dication that the neg2ect of

elastic deformations is more satisfactory, i.e. that the rý'gid-plastic

analysis is more suitable at the higher velocities than at the lower ones.

The energy ratios 2

'2 M L
R - -GV / 2E

are doubled in the tests at the larger strain and velocity magnitudes. The

actual values are listed on Table III 4. The "improvement" due to doubling

R seems to depend upon R in the waý that would be expected if the importance

of elastic vibrat-ons is being diminished; if R is smaller than 4 the

improvement is 10 to 20 percent, while if X< is 9, the improvement is less

than experimental error. This provides some indication of the minimum

value of R desirable for a rigid-plastic analysis: in this example it

appears to be roughly R > 6, but this is clearly speculative, because

effects other than elastic deformations may be playing a part.

T1e plastic behavior of mild steel is known to be sensitive to

rate of straining, the yield stress being particularly dependent on strain

rate. Parkes made use o' the data on this dep -Ante published by

Manjoine (1944) to determine a correction factor applicable to his test

results. He aimed at obtaining a strain rate correction that would

explain his experimental results as simply as possible, rather than at



TABLE III 4

3 Comparison of experimental results at same 0,

different R (diffe-ent striker velocity and deformation)

S.00457 .00915 .0183 .U274

Cl-C4 = .675 .622 .634 .635
- L

R 9.2 4.6 2.3 1.52

e
C5-C8 exp .671 .682 .751 .740eL

R = 18.1 9.1 4.5 3.0

"Improvement"

0 C5-C8
exp -. 004 0.6 '10% .12 ,19% - 16%

6 CI-C - .68 .62 .63 .64exp

Higher C9-C12 exp .592 .620 .658 .650
Velocity 6L
Smaller
Mass R 9.0 4.5 2.2 1.5

C13-C16 exp .610 .651 .720 .705
eL

R = 18.1 9.1 4.5 3.0

"Improvement" 3% 5% 9% 9%

I
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obtaining a- general analysis with account taken of rate dependence. Accor.dingly

} ]his treatment makes drastic assumptions and makes use of results obtained in

S- his tests. It leads to a remarkable degree of agreement between test results

and corrected theoretical values.

Parkes used his rigid-plastic analysis to determine the wean angular

velocity at the base of the cantilever. This is L /tf2, where tf2 is the time

of the second phase (rigid body rotation) and 8L is the rotation at the base,

and the result is

GV2 i GVoL 1 + i 6 V
22 + 2 -2L ) (2.15)
p (+8 p

The rigid-plastic theory does not furnish strain or strain rate magnitudes, since

it deals with point hinges and instantaneous strain changes. Parkes therefore

used the observation that "in all tests the hinge length was of the order of

1 in.". He thus computed the average curvature rate and extreme fibre strain

rate, respectively, as
* 8 Vdo

h; : 4hL(l+8) (2.16)

and took h as I in. in all cases. The average strain rates in the outer beam

fibres according to the formula (2.16) are shown in Table II1 3, column 9, for

the data of Parkes' tests. Parkes then determined "dynamic plastic moment"

magnitudes corresponding to these strain rate values. The data used for this

purpose, as already stated, was that of Manjoine (i9uu). (This data and comparable

results of other experimenters has been mentioned in Chapter I; see Fig. I 6).

• Curves showing Manjoine's results for mild steel as a function of strain rate In

tensile impact are shown in rig. III 14. The ratio aia is plotted in Fig. 11 14,

where a , the static yield stress, is taken as the value of yield stress in

.-4Manjoine's curve at a strain rate of approximately 10 see ", and is equal to
.6
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SJ
about 30,000 psi. The dynamic plastic ,oment M is obtained from the dynamic

I yield stress by an elementary calculation, ac ~ing the zompressive and tensile

behavior to be identical, and that plane sections remain plane. The resulting

! curve for M/M obtained in this way by Parkes is shown in 11g. III 114. Taking
p

the appropriate strain rate to be the average extrme-fibre strain rates as

listed in column 9 of Table ill 3, the 6yrnamic plastic momc;,t ratios are found

to have the values listed in column 10 of that Table.

Figures III 6 and Ill 7 shov# the comparison between rarken' test

results and those of the rigid-plastic theory. The paIr of graphs of Fig. III

6 show the angle of rotation near the base divided by that computed from the

simple rit5d-plastic theory, Equatiot. (2.1'), with the plastic moment M correspond-
p

ing to static conditions. The pair of graphs of Fig. II 7 show the same ratio

of experimental to calculated angle, but replacing the static plastic moment by

the estimated dynamic value. This amoiunts to multiplying the values plotted in

the upper curves (column 14 of Table 1l1 3) by the ratio M/Mr of column 10, to

obtain the ratios listed in column 15.

The agreement between test results end rigid-plastic theoretical ones

is clearly much better in the pair of graphs of Fig. III 7 especially for the

heavy strikers. For these the correction factor (1.5 to 1.8) on the static plastic

moment is such that the plotted ratios cluster reasonably well about the line

drawn at the value unity for the light strikers; the agreement is not quite so

good, the strain correction being somewhat too large, so that the plotted ratios

cluster around a line drawn at about 1.15 on the ordinate scale. However the

agreement is certainly be':ter than that obtained using the uncorrected static

plastic moment. Parkes nuted that agreement was poor with respect to the

deformation near the struck point. The test specimens had a rather lifferent

shape near the struck point than that predicted, and the zone of appreciable
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curvature extended farther from the tip. However Parkes concluded that the

comparison between measured and predicted angles near the root of the beam h
showed that a rigid-perfectly plastic analysis can give satisfactory predictions

of deforiations away from the point of impact, "provided due allowance is maae

for rate of strain effects". In making the correction for the dynamic plastic

momient a result from the experiments was used, but Parkes indicated his belief

that "a sufficiently accurate estimate of rate of strain could be made without

much difficulty", which would suffice for practical purposes because of the

insensitivity of the deformations to changes in the rate of strain.

It should be mentioned here that the computed results shown in

Table I1I 3 and Figs. III 6 and III 7 were obtained by independent calculations

from the data in Parkes' paper and that of Manjoine. Comparisons in these forms

were not made in Parkes' paper which gives curves showing the theoretically

predicted angle (after making the correction for strain rate influence) as

function of lI/L. In the present compL'isons we have used the general formula

Equation (2.10) whereas Parkes used the following formula derived from (2.10)

as the limiting case for veil !3rge 0:

2GV2

_ o (2.17)eL 3mL_

This gives a value of 0L about fourteen percent too large, as compared with

the result from the general formula (2.10) for the shortest beams hit by light

strikers, and accounts for some of the difference in appearance of the comparisons

shown in Figs. III 6 and III 7 and in Parkes' paper. Appreciable differences

in the strain rate were found in some cases, but these led to insignificant

differences in the dynamic plastic moment ratio.

It should also be stated here that subsequent tests by Bodner and

Symonds (1962) indicate that Parkes' method of introlucing the strain rate

"correction is satisfactory for heavy strikers, but leads to gross errors when
t i1

L!
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applied to strikers of moderate or small weight compared to the specimen weight.

This conclusion was reached as a result of tests using the same basic beam-mass

model, but performed in such a way that the conditions of the analytical model -

were approached more closely than in Parkes' experiments using lead bullets fired

against the specimen tip. Before describing these tests and a theoretical treat-

ment incorporating strain rate tependence of the plastic moment, we first

complete our summary of Park¶O' tests.

(C) Fixed-ended Beam

Parkes' analysis and tests with fixed-ended beams were described in

two subsequent papers: the first reporting tests on steel beams (Parkes, 1956),

and the second reporting tests on beams of duralumin and brass (Parkes, 1958).

The elementary rigid-plastic analysis (consideration of bending

without strain hardening or rate sensitivity) can be carried through almost as

easily as for the cantilever beam. The diagrams of Fig. III 3 apply in the first

phase, when there are two hinge points H and H' moving out from the struck point

0 as shown in Fig I11 9. Regions ahead of the hinge point are at the limit

moment M . As indicated in Fig. III 9, the second phase involves one travelingP

hinge H' and a fixed hinge at end B. The third phase involves fixed hinges at

A and B. In the first two phases the motlon is defined by two kirie"natic

quantities, for example the length z and the angular velocity W of the segment

OH'. Thus the motion in these phases can be obtained from equations of conservation

of linear and angular momentum, with appropriate continuity equations. The

third phase has one degree of freedom and the additional displacements are easily

found either by angular momentum or work-energy equations. The momentum

equations will be omitted. Solving them, the velocity V of the striking mass and

hinge positiot, a dre given in implicit form by the following equations:
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First phase

(V - V), 12M rit
o - (2.lt8a)

2 12M t
mz__ : (2.18b)

G+mz GV
0

Second phase

V(G + ImL + !mz + -2 . z2) GV (2.19a)

mz 2V =12M t (2.19b)p

Third phase

2Mi • v v2 z L + t (2.20)
1 1L

G + mL + mL 1 U2)2.2

where V2 is the velocity at the struck point at the end of the second phase.

From Equation (2.19a), putting z = LI, we obtain

mL2  mL1  ro222

2(1 + 3-G 2G- + G V (2621)

The integration to obtain final displacements is elementary, but in the case of

the second phase quite lengthy. Complete fornrjlas are given in Parkes' 1958

paper. The final displacement yf at the struck point is given by the following

formula:

I,
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2 Yf 2 2 T ~ $ 2GV L2

L Y3 4 #=tan K(3+2r)

36 K3 1 1 4
CO + sin 20 + 1 sin 4# + (±--3K) cos

- BK4 3K -
#-tan 5K

1 1

r(l + 8 + SO)
+ 11 232 (2.22)

2(1*r)(1 + ÷8-+ r 42 r+ -&

where
m"2  L1  2 8/24

r 2 , and K
G- - L- 2 1 - /24

The three terms correspond in order to the contributions of the three phases.

Parkes conducted experiments on beams of mild steel, duralumin, and

brass, using square specimens of nominal dimensions 1/4 in. by 1/4 in. In

the tests the length L2 was held constant at L2 = 1.0 in. or 2.0 in., and L1

given values LI. L29 2L2, and 5L2 . Two series were carried out, using

heavy strikers and small velocities in one, and relatively very light strikers

(bullets) at high velocities in the other, The exp•riments using bullets

produced highly localized deformation near the point oi striking, while those

using heavy weights resulted in deformed shapes very closely linear between

the struck point and the supports.

The experiments with lead bullets as strikers appiar to correspond

poorly to the theoretical model of a team with attached mass. The bullet

sprays out and exerts a force rather like that of a jet of fluid, with a

duration of the order of 0.2/12 x 1500 a 10-5 sec. for a lead bullet of

0.005 lb. weight and 1500 ft/sec. velocity. The theoretical rigid-plastic

ms
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1o0-3 sec. Clearly the experimental situation has little to do with the

I problem treated theoretically, of a rigid mass striking and sticking to a

I -beam. Although the impulse is equal to the momentum of the striking bullet,

the "attached mass" is essentially the mass of the segment of beam struck

by the bullet. Because of these difficulties no further discussion will be

given of the experi,-nts with bullet strikers.

The same difficulties pertain to Parkes's experiments with

cantilevers, already described. For these we have outlined the test results

and shown Parkes's strain-rate correction (Figs. III 6, 7), We have noted,

however, that Parkes's results and conclusions for specimens with small tip

mass (large 8) differ importantly from those of Bodner and Symonds. The
il

reasons for these differences will appear when the latter tests are

discussed in detail.

Parkes's solution (2.22) is cumbersome to work with, but

fortunately a much simpler form of solution is available, which has

satisfactory accuracy in the range concerned in the tests using heavy

strikers. This is an approximate solution, but in view of the approx-

imations in any rigid-plastic analysis the further degree of approximation

is acceptable in many cases. The simpler solution is obtained by assuming

that the entire deformation occurs in a single mode of deformation. Such

an approach is suggested by the fact that in the final deformed shape the

beam segments between the ends and the struck point are essentially straight.

A "mode approximation" solution is obtained by assuming that all motion occurs

in a deformation having this shape, as indicated in Fig. I11 10, so that

motion with one degree of freedom is considered and a single quantity such as

the deflection y* of the struck point of the angle of rotation 6* defines the

motion. The equation of motion in this pattern can be found, for example

by virtual work, taking the external forces as zero in the present problem ofI
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impulsive loading:

mL) 21 (I- ) (2.23)
p L 1  2

where V* = is the velocity of the mass at any time t, in the assumed

mode shape with plastic hinges at the two ends and at the struck point. The

above is readily integrated to obtain the velocity and displacement at any

time, assuming the initial displacement is zero and the initial velocity V*

in the assumed mode shape is known. To find V*, suppose that in a small
0

initial period t there are surface pressures p(x) per unit length applied to

the beam and a force P applied to the mass G. These are taken to correspond

to the actual initial velocities, specified in the problem:

lim pdt mv(x); lim Pdt GV (2.24)
J• o 0

The integral of (2.23) in the interval 0 < t < t is

t t L t

mL L 1-(G + V'dt + Pdt + 1-I x dxlI x)d
- 0 J L 1  0 1 J 0 P(X1)dt

L2 t

+ L2[ x dx t 2)dt = 2 L t (2.25)
2 o o2 J 1 2

Hence, setting t = t and considering T very small, we have after using

Equation (2.24), and taking the initial velocity v0 (x) = 0 in the present

problem, we obtain

GV
0 G o (2.26)

It may be noted in passing that the procedure used above may be
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derived from a different viewpoint, according tn which for any chosen mode

shape the "best" initial velocity is that which minimizes the kinetic energy

of the structure corresponding to the difference in velocity between the

assumed mode shape and the actual prescribed *.nitial velocity. The general

philosophy of "mode solution'" approximations has been discussed with several ex-

amples by Martin and Symonds (1966). In general it gives excellent results by

comparison with complete rigid-plastic solutions for problems in which one

pattern of deformations predominates, but even when this is not the case it

inay give results of practical value. Moreover it lends itself to including

effects of strain rate sensitivity and work hardening (Symonds, 1965). The

main advantage is the simplicity of method and calculations, as compared

either with the elementary rigid-plastic theory, or with one taking account of

strain rate, strain hardening, or other complicating effects.

Using the result (2.26) for the initial velocity, the solution of

the present problem is immediately obtained by integration as follows;

V 2M Lt
0V - (2.27a)mL mL

1-GLL2(I+-•)
3G 1 2 3G

GVo LIL
="Y - 12 m (2.27b)

y f 2M mL

S~p 2L(I + -•)

p •-2M L (2.27c)P

To illustrate the accuracy possible from the simple solution, we give

below the results for the final displacement y4 from (2.27b) and those from

Parkes' solution (2.22) for two cases used in Parkes' tests. The following

data relate to tests on mild steel beams with heavy strikers:

]
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I',ikes's solution yf Mode Approx. y4

Iquation (2.22) Equation (2.271)

First Second Third Total
phase phase phase

gG = 16 lb
0.00039 0.0090 0.405 0.41 0.408

V = 9.7 ft/sec
0

gG = 4 lb
= 0,00156 0.342 0.374 0.408 0.405

V = 19.4 ft/sec
0

The curves plotted in Fig. III ll(a-d) are from calculations using

Equation (2.27b). Parkes did not give results computed from his rigid-plastic

solution before applying his correction for strain rate sensitivity, but

judging from the example above, the curves derived from the mode approximation

solution are very close to those from the full solution.

(D) Discussion: Table I11 5 summarizes the test and analytical

results. In Fig. I11 11 (a)-(d), the test results and calculated deflections

from Equations(2.27)are shown graphically in dimensional form. The deflection

at the struck point is plotted as a function of the ratio r - L!/L 2 , the

length L2 being constant in each test series at either 1 in. or 2 in. The

deflection according to the elementary rigid-plastic theory exceeds the measured

deflection by a factor of approximately 1.8 in the case of mild steel, of

approximately 1.3 in the case of brass, and of about 1.25 in that of duralumin.

Fig. III 12 shows plots of the ratio of the test deflections to those of the

simple theory, the over-estimates of the theory being indicated by the fact that

the ratios of experimental to predicted values lie in the ranges 0.44 to 0.62 for
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steel, 0.75 to 0.71 for brass, and 0.82 to 0.77 for duralumin.

The discrepancies between theory and experiment shown in Figs. I11 11

3 and III 12 were attributed by Parkes to strain rate sensitivity, as in the

cantilever beam tests of mild steel already discussed. It is not possible to

3 examine these data as done in Fig. III 8 for the cantilever tests, to indicate

for or against strain hardening as an alternative explanation of the discrepancies.

The tests on fixed-ended beams were not performed in pairs as was done for the

' cantilever beam tests, with change of only the striking velocity and hence of

the deformation magnitude.

The tests on mild steel beams (unfortunately not those on brass and

duralumin specimens) were, however, made in pairs, such that in each pair of

- tests the incident energy GVO was constant. The velocity was changed from

* 9.7 ft/sec to 19.4 ft/sec and the striking mass from 16 lb to 4 lb in each

pair. The results for the ratio of measured test deflection to that calculated

from elementary theory are shown in Fig. III 13, plotting against test velocity

V . In the figure the relevant values of the energy ratio R are given, R being
- 0

the ratio of incident energy to the maximum elastic strain energy

2GV2 2L GV2

R = 2 o (2EI. (2.28)2 2EI 2M ML L
p p

Clearly the value of R is the same for each pair of tests.

The summary of results shown in Fig. I1I 13 provides some slight

evidence that the discrepancy between the estimated deflection from elementary

rigid-plastic theory is due to strain rate sensitivity, since there is a

"consistent decrease of the ratio (y )e/y* as the velocity increases. This

would correspond to an increase in plastic moment at higher strain rates. There

is also a consistent reduction in the degree of dependence on velocity as the
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energy ratio R is incrtased, so that when R is about 10 there is a rather strong

dependence on velocity, while at R = 57 the chanc,• wit!: velocity is negligible.

There is also a quite consistent decrease of (y /y* as R increases. Both"f exp f

these apparent dependences on R are coincidental; as R increases so does the strain

rate, which seems to play the leading role. This will next be examined.

Parkes attributed the discrepancy between test deflections and

elementary rigid-plastic theory wholly to the increases of yield stress with strain

rate, just as in the cantilever beam tests on mild steel. He showed that

remarkable agreement between measured and calculated deflection could again

be achieved by the simple correction method already described for his cantilever

beam tests, i.e. by replacing the static plastic moment M by a dynamic valuep

M, the ratio M/M as a function of strain rate being derived from test ýoesultsp

for the ratio a/a of dynamic yield stress to static yield stress as a functionC

of strain rate. The dynamic tension test results for mild steel, already cited,

of Manjoine (1943) were used for the present mild steel tests (see Fig. III 14).

No data exist for duralumin and brass as complete as a Manjoine's for steel.

Parkes constructed a curve for duralumin from test data of Klinger (1950) for

the range of strain rate 0.01 to 1 sec - of Evans (1942) for the range .01 to

-4. -1
10 sec , and of Whiffin (1948) for a strain rate of about 15,000 sec The

curve shown in Figure III 15 is the one given by Parkes for the dynamic bending

moment ratio of duralumin. For brass there is even less information, but Parkes

nevertheless drew the curve shown in Figure III 15, which is based on results of

Jones and Moore (1940) for the strain rate range 0.1 to 10 sec-, which "suggest

that the strain rate sensitivity of brass is about half that of steel."

The curves of Fig. III 15 are essentially guesswork. Moreover, their

applicability to the analysis of Parkes' data is obviously questionable; the

variability of strain rate sensitivity with constitution and condition of the metal
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is well known (see Chapter I). Nevertheless, the use of such curves to estimate

the correotion due t.o stran rate .ens ,ivity is of interest, if only to show the

3 Worder of magnitude of strain rate sensitivity required to account for the discrepancy

between test results and elementary theory.

I As for the cantilever tests, Parkets' strain rate correction for the

fixed-ended beams was made by estimating the strain rate in each test, and obtain-

I ing the ratio of dynamic to static plastic moment from the appropriate curve of

Figures I11 14, II1 15. In order to estimate strain rate from velocities, the

average hinge length was assmied known, This was stated as "about . in. in all

tests" Since the beam depth h was I in. in all tests, the ratio z/h of average

hinge length to beam depth was thus taken as 2. Strain rates may be estimated

from the pattern of velocities ii the mechanism of Figure II1 10 as follows.

Consider the angular velocity acroas the hinge at the struck point to be wI + W2"
The rate of curvature here is (w + 0 )/z, a-d the rate of strain is h(1 + w2)/2z.

1 2)zadthraeostani w+ 1 )2.
The average rate of strain during the deformation can be estimated as half the
initial value. By writing w V /L 2 V/L29 the result obtained for the

average strain rate is

I hV hV hV

4z L Lo 4. r (2.24)
I +2 YI2 2I

This is taken as an adequate estimate of the average strain rate in all three

hinges. (It is the exact formula for the mean strain rate in the three hinges

if the hinge lengths at the end sections are both assumed to be z/2.) The strain

rates listed in Column 11 in Table III 5 are those computed by the above Column 12

of the same table were obtained by use of the curves in Figures III 14 and III 15.

"The strain-rate corrected deflection, and ratio of deflection measured

in the tests to the corrected magnitude are shown in Columns 13 and 14 of Table

111 5. The corrected deflection curves as function of the length ratio L /L2 are

SI
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plotted as dashed lines in Figs. 1i1 11 (a)-(d). The ratio of test deflection 4
to the strain-rate corrected rieid-plastic deflection is shown in Fig. 111 16.

Agreement is seen to be very good. Considering the uncertainty of

information about the strain rate sensitivity of the materials--brass and duralumin,

in particular--the agreement is remarkable. Whether or not the agreement is

significant is much less clear.

The good agreement in any such comparison could obviously be accidental.

The elementary rigid-plastic solution (without rate effect) could be badly in

error, and the strain rate correction--obviously approximate in any case--might

also be erroneous, but by accident happen to just balance the other errors.

The possibility that the elementary rigid-plastic solution is grossly

in error is hardly negligible. This analysis omits at least four physical

phenomena which tend to reduce the deflection, i.e. lead to an over-estimate

such as shown in Figs. Ill 11 and Ill 12. These are: elastic vibrations;

work hardening; strengthening due to axial constraints; and load reduction due

to the finite size of the striking mass. It is entirely possible that these

effects cogether would lead to a reduction in deflection of the observed

magnitude, and that the attribution of the discrepancy wholly to strain rate

effects is quite incorrect.

Of the four effects listed, probably the most important in the tests

on built-in beams is the effect of axial constraints. Work hardening might be

important for, steel, but not for the brass and duralumin beams; for the tests on

these materials the plastic bending moment was chosen as the ultimate moment,

"rather than that coamputed from the yield moment (see Fig. II 17). This choice

should more than compensate for work hardening. It is not certain that elastic

vibrations play a negligible part. In the tests on steel beams the ratio of

incident energy to maximum elastic strain energy was greater than 8 in all cases,
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while in those on brass and duralumin the smallest value was 3 or 5. Figure III

12, plotting the ratio of test deflection to that of elementary theory, shows

little variation of this ratio with L /L if elastic vibrations were important,
1 2'

one would expect a much better agreement with theory as L IL is decreased from
1 2

5 (R = 3) to I (R = 10), in the duralumin tests; but the improvement is seen

to be only about 6 percent. However, the end supports, which maintained fixed

angles at the beam ends, must have been massive, and may have introduced a

constraint effect of appreciable magnitude. If the ends had been fully constrained

so that no approach was permitted, the nature of the defornmation would have

been drastically altered in that bending action would have become replaced by

membrane response, at the test deflections which reached two or three multiples

of the beam depth. This implies a large stiffening effect, so that the deflections

are a small fraction of those predicted by a theory considering bending only I
(see Symonds and Mentel (1958)and Nonaka (1960)).

It is difficult to feel confidence in Parkes's strain rate correction

for brass and duralumin specimens because the small amount of test data in

direct tension or compression shows a very small rate dependence for both metals

up to a strain rate of about 10 sec . Evans' (1942) studies included tests

on mild steel, duralumin, and brass, giving curves of yield point stress and

tensile strength for the three metals as functions of strain rate (Fig. 11 18).

In view of Parkes's use of ultimate moment values for his calculations, the

dependence of tensile strength should be of particular interest. For the whole

.. range of Evans's tests from strain rate 0.01 to 10 sec-I the results for brass and

duralumin show a negligible change in the tensile strength. (There seems in

*" fact to be a slight decrease at i about 20 sec- compared to the value at

about 0.01, for both metals.) These results are not compatible with the strain

rate corrections of 20 to 30 percent applied by Parkes, at average strain rates of
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the order of 20. Only Whiffin's (1948) tests (as much higher strain rates) showed

a large strain rate sensitivity for duralumin; for example, specimens with 0.2

percent static proof stress 43,000 psi were found to have dynamic yeild strengths

averaging about 69,000 psi (with scatter ranging from about 60,000 psi to about

76,000 psi). These results were found from tests in which cylindrical specimens

of the test metal were fired at armor steel blocks, at velocities ranging from

about 600 ft/sec to about 3100 ft/sec. The analysis for the dynamic yield

strength was made using the method of G. I. Taylor (1948). The computed

values of the strain rates (of the order of 10 sec ) and dynamic yield strengths

obviously depend strongly on the interpretation of the tests through an analysis

that is by no means exact, and in fact demands ad hoc assumptions that affect

the computed results and have no independent confirmation.

Parkes's tests on cantilevers and fixed-ended beams can be interpreted

as showing that small beam specimens of mild steel, duralumin, and brass behave in

impact tests as if the dynamic plastic bending moment is larger than the static

value by substantial amounts, the increase ranging from about 2 for mild steel

to 1.2 or 1.3 for duralumin and brass. His tests appear to show also that the

analysis of rigid-plastic type can be carried out as if the material were

perfectly plastic, but characterized by a dynamic rather than static plastic moment,

whLse value can be estimated with sufficient accuracy from results given by the

simple rigid-plastic treatment. This conclusion is not confirmed by tests to be

described next by Bodner and Symonds, which showed instead that a correction of

the elementary rigid-plastic analysis by simply correcting the plastic moment

could be grossly in error in certain cases. The effent of strain rate sensitivity

is in these cases to change the pattern of deformations, as well as to increase

the plastic moment.
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3. Bodner and Symonds's Experiments.

Experiments of Bodner and Symonds (1960, 1962) were of two kinds,

termed "impulsive" and "impact", respectively. The former type made use of the

same basic theoretical model as that of Parkes's (1455) tests on cantilevers,

rig. I11 4. The main difference was that the tip mass was bolted to the

3 cantilever, and was set in motion by applying an impulsive load directly to it.

This was done either by detonating a small explosive charge on the tip mass, or

by firing a bullet which entired and remained embedded in it. This load caused

the tip mass to acquire velocity V in a time short compared with the time of
0

* deformation; this velocity is takea as the initial velocity in the theoretical

model, analogous to the striking velocity of the falling mass in Parkes's

experiments. In the second or "impact" cype of test described by Bodner and

I Symonds, the cantilever beam specimen again carried a mass bolted at its tip, but

the base of the cantilever was given a shock such that its velocity was changed

in a time short compared to the time of deformation.

Since the impulse type experiments are close to those of Parkes on

cantilevers, and lead to rather different conclusions, they will be described

T first.

(A) Impulse Tests

SIn Table III 6 are listed the basic conditions of Bodner and Symonds's

"impulse" tests, which may be compared with those listed for Parkes's tests

in Table III 2.

I These tests were designed to differ from Parkes in two major respects.

First, the attached mass, bolted to the beam, was an integral part of the beam.

This should have eliminated uncertainties in Parkes's tests due to movement of the

striking mass relative to the beam, and avoided the obvious difficulties in his

"tests with lead bullet strikers. Secondly, the tip masses were chosen so that the

I
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TABLE III 6

Impulse Test Conditions: Cantilever Beams with
Tip Mass, Tests of Bodner and Symonds (1960, 1962)

(1) Bullet fired into tip mass.

Length L = 14.0 in. (mild steel specimens)

L = 6.0 in., 8.625 in. (6061-T6 aluminum alloy)

Cross-sections: depth h = 0.177 in., width b = 0.634 in. -0.695 in.

(mild steel specimens)

depth h = 0.255 in., width b = 0.775 in. -0.795 in.

(6061-T6 aluminum alloy)

Weight of tip mass: 0.68 lb. to 1.47 lb. (mild Steel)

0.29 lb. to 0.385 lb. (6061-T6)

Beam strength properties:

Mild stee_: o 29.0 ksi, MP 146 in-lb

6061-T6 aluminum alloy: o = 38.0 ksi, MH 485 in-lb

NOTE: High velocity ('4000 fps) steel bullets were used, which remained
embedded in the tip mass.

(2) Explosive charge detonated on tip mass.

Length: L = 4.35 in. (mild steel specimens)

L = 2.97 in., 4.34 in., 5.95 in., 7.65 in.

(6061-Tb aluminum alloy)

Cross-sections: depth h = 0.053 in., width b = 0.312 in.

(mild steel specimens)

depth h = 0.053 in. -0.119 in., width b = 0.210 in.

-0.312 in. (6061-T6 aluminum alloy)

Weight of tip mass: 0.0115 lb. -0.0232 lb. (mild steel)

0.0056 lb. -0.0154 lb. (6061-T6 aluminum alloy)

Beam strength properties:

Mild steel: o = 44.0 ksi, M = 9.62 in-lb0 p
6061-T6 aluminum alloy: ao = 43.0 ksi, M = 9.42 in-lb -47.5 in-lb

0 p
NOTE: Lead azide charges in plastic cylinders were detonated in direct

contact with tip mass.
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mass ratio parameter 0 = mL/2G had values through the range from about 0.15 to

about 1.0, so that the variation of results with 0 could be studied. By contrast,

in Parkes's cantilever tests the values of 8 for the heavy strikers lay in a small

range from about 0.005 to 0.10, and his tests using light strikers (lead bullets)

had much larger 0 values, roughly 4 to 26. The range of 8 in Parkes's heavy-

striker tests is such that in all cases more than 90 percent of the initial

kinetic energy is absorbed in the base hinge, according to the elementary rigid-
I

plastic analysis. Hence these tests are not suitable for studying phenomena

"associated with changes of the pattern of deformation. The tests with his light

strikers would have given a useful contrast with the heavy-striker tests, since

for these tests less than 10 percent of the energy goes Into plastic work at the

base hinge. However, the significance of these tests with lead bullets must

be considered doubtful, as already pointed out. In the Bodner-Symonds tests a

"substantial change of plastic work distribution, from over 80 percent ir the

base hinge to about 45 percent, was achieved without significant change in the

testing technique.

In these tests, the determination of initial velocity was made by

measurement of the applied impulse. In the tests where explosive charges were

- used, the impulse of a measured quantity of lead azide chargL was held in a

r plastic container which disintegrated in the explosion. Care was taken that tie

geometry in the calibration test was closely similar to that in the test on tht

J specimen beam. Good reproducibility of impulse was obtained for a given size

of charge. In the tests using bullets fired into the tip mass the impulse was

I obtained from the measurement of the bullet speed by high speed photography.

Again, good reproducibility of impulse was obtained for a given bullet charge.

In both types of test, impulses could be reproduced with a variation of two

J percent or less.

I
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A disadvantage in the tests using explosive charges, as compared with "

Parkes' tests, was that the magnitude of the impulse could not easily be changed

by large amounts. Therefore, as shown in Table III 7(a) (mild steel) and III 7(b)

(6061-T6 aluminum alloy), these tests were performed with only two magnitudes of

applied impulse. The desired range of deformation angles was obtained by changing

tip mass and (in the 6061-T6 tests) the beam dimensions.

The results are compared first with the prediction of the elementary

rigid-plastic theory. Curves labelled A in Figures III 19(a) and 19(b) show

the experimental final rotation angle near the base divided by the angle

predicted by elementary rigid-plastic analysis, Equation 2.10. The results for

mild steel may be compared with those of Parkes in Figs. III 6.

In plotted results from Bodner and Symonds's tests a trend appears for

both mild steel and aluminum alloy 6061-T6, that is missing from Parkes's

cantilever test results. This is a trend toward better agreement with tests

and elementary theory as the ratio 8 increases, so that for 8 u 0.7 the test

angle is approximately equal to the predicted magnitude, while at 8 = 0.15

the test angle is substantially less than the predicted angle--the ratio being

about 0.65 for mild steel, 0.80 for 6061-T6. Thus only at the smallest 8

values (heaviest tip masses) is the reduction in angle of rotation as large as

that found by Park.s. AT the largest 6 values in the Bodner-Symonds tests the

final angle measured in the tests on mild steel beams was appreciably larger

than the theoretical value, In other words, the elementary theory with static

plastic magnitudes predicts a smaller angular deformation than that actually

experienced by the specimen beam, despite the rate sensitivity of the material.

Parkes' tests at large 8 values fail to show the trend with S noted

above; however, these tests used lead bullet strikers directly on the beam, and

their validity is questionable. As already pointed out, it seems unreasonable to

apply the simple analytical model with fixed end mass to these tests; and apart
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from the fact that the tip mass is certainly not the bullet mass (as assumed),

the effective impulse may be much less than the bullet momentum because of local

deformation.

An unfortunate feature of the Bodner-Symonds tests was their use of

beams of different lengths and cross-sections, so that changing 8 involved

changes in several variables rather than a change only of the tip mass. Also,

as 8 and the impulse I were changed so was the deformatior ma-nitude. Thus it

is not possible to compare the experimental deflections with theoretical predictions

at constant strain magnitudes. The final angles are shown in Figs. III 19 (as

average values for each set of test results at nearly constant 8). There seems

to be no systematic dependence on the deformation magnitude, and the correlation

of deformation magnitude with ratio of experimental angle to theoretical

prediction is often opposite to what would be expected if strain hardening were

playing an important role. For example, the mild steel tests at a 0.15 with

oexp = 26 are in worse agreement than those at 8 = 0.3 with eexp 52 0; these
4A

particular sets of tests were both made with essentially the same beam dimensions

and impulse, only a change 'f tip mass being made. If strain hardening were the

principal cause either of the discrepancy between test results and rigid-plastic

- theor-y (0exp/6rp / 1), or of the trend of test results toward better agreement

as 8 increases, the agreement should be best at the smallest rotation angle and

become worse at larger angles. The comparison of rotation angles in Fig. III 19

(a) thus leads to the same conclusion as the similar comparison in Fig. III 8 for

Parkes' cantilever tests, namely that strain hardening is not mainly responsible

"for the differences between deflections observed in tests and those predicted by

elementary rigid-plastic theory. (The indications on this point from Parkes' tests

are more complete and systematic.)

Since in the cantilever tests there are no constraints arising from

finite deflections, and strain hardening seems to play a negligible role, the



discrepancies between results of tests and elementary theory may he presumed due

either to neglect of elastic deformations, or to neglect of strain-ra~e sensitivity -v

of the plastic moment, or to both combined. We shall conqider here only attempts

to explain these on the basis of strain-rate sensitivity. The tests were

designed so that the ratio R of incident energy to maximum elastic strain energy

was laige; for the mild steel tests, R was greater than 8 for all but one case,

while for 6061-T6 R was greater than 3 in all cases. The influence of elastic

vibrations cannot be conclusively ruled out until more systematic tests concerning

their influence are reported; however, other explanations must presumably be

found for the discrepancies appearing in Figs. I11 19, since most of these are

opposite to what would be expected if elastic deformations were playing an

important role.

Further corroboration of the above statements is given by impulse

tests of Bodner and Speirs (1963) on aluminum alloy 3003-H14 in a cold worked

condition (static yield stress o = 20,300 psi at room temperature). Testso

were made on beams of depth 0.079 in., width 0.30 in. (except for some at 0.50 in.),

and lengths ranging from 2.15 in. to 8.01 in., at three temperatures: 70 0 F, 2120 F,

and 4000 F). The results are shown in Fig. III 20. The dependence on 8 is

very similar to that shown in Figs. III 19 for mild steel and 6061-T6. The evidence

from deformation magnitudes also is comparable to that from the results shiown

in Figs. III 19; in particular, strain hardening appears unable to account for

the observed discrepancies.

The role of strain rate sensitivity in these tests must therefore be

examined critically. The simplest way to introduce a strain rate sensitivity

in that of Parkes, as described above. The dynamic yield stress is supposed

known as a function of strain rate, and from this the dynamic plastic bending

moment for a rectangular beam section. For the impulse tests, the average strain

rate according to the formula of Equation (2.l6),from the elementary rigid-
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pIasti ana2y:2 , :hu:two, • .... dnamn ic yield moment to be computed for each

t est. Each test result ma , then be compared with the predicted deformý r

ungle reduced by the ratio Mp/Mý, where M' is the dynamic pl¢" moment,

As shown in Table ill 7, the strain rates calculated in this way

3 for the steel tests lie in the range 1 sec- to 8 sec-, while those for the

6061-T6 tests are somewhat larger, from 8 sec to about 31 sec If the

test deflection is divided by that predicted by elementary rigid-plastic theory

multiplied by the ratio M /MI, the result is approximately unity for the pointsT p

of largest tip mass (smallest magnitudes of 8). However, at the largest values

of 8 the ratio of test deflection to the modified rigid-plastic value reaches

nearly 2 for the mild steel tests, and about 1.2 for the 6061-T6 tests.

The results for mild steel indicate that the simple strain rate cor'rectiol

suggested by Parkes is unsatisfactory in this problem. For 6061-T6 the results

point toward the same conclusion, but less positively; the maximum discrepancy

after correction is about the same as that before correction, but shifted to

the region of largest S.

It is obvious that at least for a strongly rate-sensitive metal such

as mild steel, putting rate sensitivity in the analysis of the impulse problem

cannot be done by merely increasing the magnitude of the plastic moment so as

"to correspond with average strain rate magnitude, and using the new constant

moment magnitude in the same rigid-plastic analysis applicable to a non-rate

dependent material. The failure of this simple method in the present problem

is apparently rfelated to the change of deformation pattern. Use of a constant

plastic bending moment implies that the distribution of work done in plastic

-4 straining remains unchanged when strain rate sensitivity is introduced. This

distribution is governed by the mass ratio parameter S. However, as 8 is

changed over the range considered in the Bodner-Symonds tests the experiments

show that the discrepancy between theory and experiment changes drastically; at
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low 0 values the elementary theory strongly ove predicts, while at 8 valuesI

approaching I it underpredicts. Such a large qualitative difference cannot be

accounted for by strain rate sensitivity if the deformation pattern retains

the same dependence on $, i.e. if the analytical model used for a constant

plastic moment is assumed to apply as well to the case in which M depends on
p

strain rates.

The strain rate dependence in the impulse problem must therefore

evidently be taken into account by a method such that the pattern of deformation

as well as its magnitude is modified by the strain rate sensitivity of the material.

This will presumably be the case if the plastic moment is assumed to have a

functional relation to the curvature rate (or strain rate, equivalently), and re-

garded as a function of position and time. The first analysis of this type was

presented by Cowper and Symonds (1957). This was extended and improved by

Ting and Symonds (1962) and by Ting (1963. 1964).

These "viscoplastic" analyses have been reasonably successful in

predicting the feature observed experimentally in the impulse teb_3, of a

deformation less than that of the elementary rigid-plastic at small $ values,

and larger for 8 > i. Oualitatively, the explanation may be as follows. Large

8 values correspond to small tip masses, and therefore to high strain rates in the

first phase of the elementary theory, which leads to continuous deformation.

These high strain rates seem to stiffen the beam in this phase, so that less

energy is absorbed in it. Hence more energy must be absorbed in the second

phase, with deform-ation mainly near the base of the beam. in this way it is

seen to be possible for the deformation at the base to be larger than that

predicted by the elementary rate independent solution, despite the fact that

rate sensitivity is a strengthening effect.
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(B) Impact Tests

Reference has been made to experiments using the "impact test" model,

defined as a cantilever beam with tip mass, whose base is given a rapid change

in velocity. In one type nf test the specimen beam is initially in motion with

constant velocity, and deformation occurs when the base strikes a massive anvil.

Such tests were described by Mentel (1958) and by Podner and Symonds (1962),

Alternatively, the beam may be initially stationary and the base subjected to

impact so that it acquires a velocity in a short time. This method has the

advantage of eliminating vibrations of the beam specimen that may be present

just before impact. Tests were reported by Gillis and Lerner (1960) using this

technique. Finally, a third method which is equivalent to the others for very

short acceleration times is that which uses explosive or shock wave loading

applied to a fixed-base cantilever, as by Bodner and Humphreys (1964).

We will review here briefly the main experimental results of Bodner

and Symonds (1962) and Gillis and Lerner (1960), these being the most complete

series. The test conditions of the two investigations are summarized in Table

III 8(a) - (b). The results are summarized in Table Ill 9(a) - (L,).

The elastic-plastic treatment of this problem was discussed by

Alverson (1956, 1958) and by Stallybrass (1960). We are here primarily

concerned with the rigid-plastic approach, since plastic deformations are

assumed large.

The rigid-plastic solution was presented by Mental (1958)

and discussed also by Ting and Symonds (1962). We outline below the essential

features of this solution, since it serves as a guide for the experiments as

well as for the viscoplastic analysis.

The base velocity is assumed to be V1t) = V [l-f(t)] where
0

f(t) t/t 0 for t < to0 f(t) 1 for t > t . V is the change of velocity of-- 0 0
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TABLE II 8 (a) I
impact Test Conditions: Cantilever Beams with
Tip Mass, Tests of Bodner and Symonds (1962)

Two cantilever specimens attached transversely to carriage, accelerated by
HyGe machine, propelled along track to impact with heavy mass.

Specimens: lengths approx. 4.5 in., 2.0 in.
width 0.312 in.
depth 0.125 in. (mild steel)

0.119 in., 0.125 in. (6061-T6
aluminum alloy)

Tip mass ratios: 0, 2.0, 4.2 (mild steel specimens)
0, 1.8, 2.0, 6.1, 4.3, 12.9 (6061-T6

aluminum alloy specimens)

Beam strength properties:
Mild steel: a = 30.0 ksi, M = 36.6 in.-lb.o p

0 = 44.0 ksi, M = 53.6 in.-lb.o p
Aluminum alloy 6061-T6: a = 43.0 ksio

M = 52.4 in.-lb. or 47.4 in.-lb.
P

Impact velocity range: 35 ft./sec. to 100 ft./sec.
Stopping time range: 0.07 msec. to 0.37 msec.

TABLE III 8 (b)

Impact Test Conditions: Cantilever Beams with
Tip Mass, Tests of Gillis and Lerner (1960)

Two cantilever specimens attached transversely to carriage, subjected to
impact by mass propelled along track; specimen carriage decelerated slowly
by friction brake.

Specimens: lengths approx. 4.5 in.
width 0.312 in.
depth 0.125 in., (mild steel)

0.119 in., 0.127 in. (6061-T6
aluminum alloy)

Tip mass ratios: 0, 0.3, 0.7, 1.4. 1.9: 2,1 (mild steel)
2.0, 3.9, 5.9 (6061-T6 aluminum alloy)

Strength properties:
Mild steel; 0 = 41.0 ksi, M = in.-lb., 53.6 in.-lb.0 p

Aluminum alloy 6061-T6: M = 47.5 in.-lb., 56.5 in.-lb.p
Impact velocity range: 53 ft./sec. to 96 ft./sec.

Stopping time range: 0.07 msec. to 0.10 msec.



1 3 !TABLE III 9(a)

IMPACT TEST RESULTS - MILD STEEL BEAMS

Tests ol Bodner and Symonds (192)
Gillis and Lerner (1960)

"A6p prox;ExactSe 6 _ v
v ep 8m rp VP 'VPrx p in 6!e (I - T_. exp

No. L K in/see Wsec R deg. rp tf rp 6 8 (1 0

A I8 4.45 2.02 694 255 43 70.00 2.26 106 2.24 0.543 0.55
1.222)

9" 580 333 30 47.0 1.59 68 1.56 0.525 0.57
S',0.821)

1 10 " " 511 319 23 42.1 1.23 63 1.21 0.607 0.57
4 60.736)

11 " 639 269 36 72.5 1.92 93 1.90 0.667 0.56r 1.268)
12 ' ~ 589 368 31 55.0 1.63 63 1.60 0.600 0,57

(0.961)
13 " 415 315 lb 33.5 0.810 47 0.79 0.735 0,59

A14 1 " 330 356 9.5 14.5) 0.513 36 ý0.50 0.508 0.60S! (o 0254•o~
is 702 298 44 69.5 2.32 92 2.30 0.528 0.55

'i 151.213)

1 4.46 2.00 816 202 26 78.0 2.13 98 2,11 0,680 0.55
(1.362)

B2 " 650 168 16 50.0 1 35 94 1.33 0.690 0.56 0.5851J (0.873)
83 " 612 170 14 44.2 1.20 87 1.19 0.688 0.56

(0.771)

:a26 4.4b 2.06 631 74 132I 48 8 .30 294 1.30 0.654
'0852)

27 . 675 83 137 ýS5.7 1.49 281. 1.49 0. h'4
-0,973) 1 132

281" " 739 44 67.8 1.7 322 .78 0.664
"" (1.182) I

Specimens A8 - A15, B1 - B3 (Bodner and Symonds, 1962) Mild steel: oo 30 ksi (A specimens),
"44o a 44 ksi (B specimens); Beam depth 0.125 in., width 0.312 in. M 36.6 in-lb (A spec.)

M = 53.6 in-lb (B spec.)

Specimens 26-28 (Gillis and Lerner, 1960, specimen group 56) Mild steel: a0 = ksi,

Mp 49.6 in-lb; Beam depth 0.125 in., width 0.312 in.
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the base (or the initial velocity of the beam due to explosive loadi..2 in

U Bodner and Humphrey&' tests).

The initial rigid-plastic response pattern is governed by V /t and
0 0

by the tip mass ratio k. Figure Il1 23 summarizes the situation, and shows that

if VY t > 24&M /mL2 an,< k > 1 an interior plastic hinge appears with sense of
0 0- p

bending opposite that of the base plastic zone. (Figs. IIl 22 (c)). The

analysis leading to Fig. Il 23 neglects the moment of inertia of the tip mass

* -about its centroid. It was shown by Mentel (1958) that neglect not only of the

tip mass inertie but also of the presence of the internal hinge leads toj -jj negligible errors in the main deformation at the base hinge. Thus a pattern of

deformation consisting of a simple rotation about an axis at the base (Fig. III

4'

Si; 22(d)) is a very accurate one. For this simple linear velocity distribution

-- the elementary rigid-plastic analysis leads to the following results for the

final rotation angle 0 and the time t at which motion stops:
rp

t
er2 3 m (I f -a (3.22)

f

where

2 mLV ML'V
3 (1 + 2k) o 1 + 2K 0

m 8 1 + 3k M 2 2 NSp p

The test results of Bodner and Symonds (1962) and Gillis and Lerner

(1960) are presented as plots of e ex/e vs. tfot. In these experiments
exp rp f

the stopping time to was so short in relation to t. that the "correction factor"

I - to/tf of Equation (3.22) was within 2 or 3 percent of unity. (This was

intended in the design of the experiments, so as to minimize effects associated

with details of the impact, such as the shape of the velocity-time curve.)

Comparisons are shown between test and theoretical results in Figs.
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III 24 (a) and ( 1 ) , plotting x /V as functions of velocity change V0,
exp ~rp o•fntoso "^÷0

where B is the elementary rigid-plastic result as calculated from Equationrp
(3.22) These comparisons are made for a single mass ratio k, namely K 1 2.0.

Other values of k were used in the experiments, but to keep complications to a

minimum in the present comparisons, tests with only one beam geometry are consid-

ered.

In the comparison shown the energy ratio R was greater than 9 for

the mild steel tests and between 5 and 7 for the aluminum 6061-T6 tests. These

values are the ratio of the plastic work M pe in the test to the quantityp exp

M2 L/2EI, which is taken as a measure of the maximum elastic strain energy that
p

could be stored in the beam.

The p]gts in Figs. III 24 show large scatter of results, despite

the restriction in each ca.e to a single value of k and the same beam geometry.

This scatter has not been explained, and the results are to some extent

doubtful because of it. It is perhaps associated with elastic vibrations,

despite the large values of energy ratio R. The importance of elastic

deformations might have been increased by the raising of the upper yield stress,

in the mild steel tests. The upper yield effect is enhanced in impact testss

and seems to be further increased in bending as compared with simple tension

or compression, as shown recently by Aspden (1963); see Aspden and Camp ell

(1966).

Another possible source of scatter in the tests of Bodner and

Symonds is the fact that the beam is in motion prior to impact. The base of the

beam is moving with constant velocity, bot vibrations excited by the initial

acceleration of the beam are still appreciable. In the tests of Gillis and

Lerner this difficulty was removed by having the beam stationary and at rest

prior to impact. Some reduction in scatter was obtained by this change in
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technique; average deformation values at a given velocity are about the same

U as in Bodner and Symonds' tests,

The plots in Figs. III 24 show that for both mild steel and 6061-T6

the measured final angular deformations were substantially smaller than those

predictea by elementary rigid-plastic analysis over the range of impact

velocities used, the ratios of test deformation to the value from elementary

I theory being approximately 0.5 to 0.7 for mild steel and 0.6 to 0.8 for

6061-T6.

The neglect of strain hardening in the elementary rigid plastic

theory again can be eliminated as a major cause for this disciepa, Figs.

III 24 show the deformation angles in deg-ees for each test. If strain

hardening had been a major cause of the reduction of deformation from that

predicted by the elementary theory one would expect some correlation between

T the discrepancy and the magnitude of the deformation, with agreement becoming

T worse as the deformation angle is increased. No downward trend in the ratio

" e ixp/6 is found in any of the test series. As far as one can judge, ineprp

view of the scatter of results, the observed deformations remain at

essentially the same fraction of the values Dreuicted bv elementary theory,

independent of velocity and strain magnitude.

We consider now the approach to a viscoplastic analysis.

Diffei.ential equations for the beam problems have been derived

and solved, in which the plastic bending moment in excess of the static

magnitude at each section is a chosen function of curvature rate. The

pattern of deformation shown in Fig. III 21 is still postulated. An interface

x = z(t) is assumed to separate the region near the base where plastic

deformation occurs at time t from thp region x > z which moves as a rigid

body. The bending moment at the interface is M., the static plastic moment,
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M (x) 1 at x < z, being governed by the strain rate. The following

P

relation was used in the analyses by Cowper and Symonds (1957), Ting and

Symonds (1962) and Ting (1963, 1964):

i =(sgn M) ( )p, IMI > M

K 0 IMI M (3.1)

where k is the time rate of change of the curvature K, and p and B

are constants. This relation was ierived from the corresponding one for

simple tension or compression,

e:(sgno (X i-)p, 1I1 %
00

0 aol < (3.2)

where a is the stress, ý the strain rate, and D is a constant of the material

having dimensions of strain rate. The above simple form of non-linear

viscoplastic relation can be made to fit published data with accuracy

satisfactory for engineering purposes. Numbers for D and p chosen to

fit Nanjoine 's curve for mild steel and Parkes' composite curve for duralwninum

are;

Mild Steel D =40 sec- p =

Duraluminum D = 6500 sec- p 4

The constant B in the bending moment-curvature rate formula is related to

D (by calculation assuming plane sections to remain plane) as follows:

B D 2 (2 p + l)p (3.3)
h 2p,

when i is expressed in (seconds)-

The pattern of deformation shown in Fig. III 21 apparently resembles

j
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that of the first phase in the elementary rigid-plastic solution of the same

problem, except that the moment in the plastic region is not constant but

varies from M to M at the base. A more important difference is that

instead of there being two distinct phases the configuration of Fig. III 21

applies through out the motion. During the deformation the interface moves

toward the base and strain rate magnitudes decrease. When they become zero

-ff motion ceases, so that the final bending moment at the fixed end is Mp.

In order to solve the problem completely (in the framework of the

conventional beam equations) it would be necessary to solve the following

partial differential equation in the plastic region 0 < x (t):

a W + p (3.4)

Swhere - 1 > 1. This fourth-order non-linear parabolic equation mupt
P• p

be solved subject to conditions at the boundaries x = 0 and x = z(t); z(t)

defines the interface between regions u > 1 (0 A x < z) and Iml < i, (z < x < L).

The unknown function z(t) must be found from the equations of momentum

conservation for the whole beam and the continuity conditions at the

interface. This presents a difficult problem, even for a wholly numerical

analysis, and the complete solution has not been carried out. However, Ting

(1963) and Ting and Symonds (1962) considered the related impact problem,

where the base of the beam is impacted so that it attains a velocity V in
0

a specified short time. The pattern of deformation is taken the same as in

Fig. III 21. Ting (1963) obtained the complete solution of this problem by

an iterative numerical technique. The approximate solution described by

Ting and Symonds (1962) is based on what at first appeare to be a drastic

simplifying assumption, namely that in the plastic zone 0 < x < z(t) the

inertia forces are zero. This may perhaps be argued as plausible on the grounds
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. .. o- t . to motion in the plastic v1giu) is 1)r'i111dr'i1y dUe tO

bending strength, enhanced by high strain rates , rather than to inertia.

In any event, this simplification was shown to be permissible in the impact

problem treated, the final angles differing from those obtained in the

complete solution by amounts less than one percent in two examples of mild

steel beams, and by about two percent in two examples of aluminum alloy

6061-T6. The success of the approximation of neglecting inertia in the

plastic zone is presumably relatzd to the fact that during most of the

deformation the plastic zone is presumably related to the fact that during

most of the deformation the plastic zone is fairly small (less than one-

third the beam length); the momentum of material adjacent to the base of the

beam is small, and its contribution to the moment of momentum smaller still.

Hence an approximate inclusion of this momentum, or its omission altogether,

may lead to small errors in the final deformation.

The neglect of inertial forces means that the shear force is

constant in the plastic region. Then instead of a fourth order non-linear

partial differential equation with an unknown moving boundary, one has a

simpler problem of coupled ordinary integro-differential equaticns expresaing

conservation of linear and angular momentum.

We shall write the equations for a viscoplastic analysis first in

general forms applicable either to Parkes' problem (stationary beam with tip

mass subjected to an impulse) or to the problem briefly mantioned above in

which the base of the beam is given a change of velocity in i short time, i.e.

the "impulse" problem and the "impact" problem respectively.

After outlining the viscoplastic approach to both problems, and

showing results for the impulse problem, the impact problem will again be

looked at in more detail. Experimental results are available for this

problem as well, although, as will be seen, they are in some respects unsatis-

I
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I factory.

I (C) Viscoplastic Analysis

We consider a beam with given initial velocity distribution v 0 (x) = v(x,O).

In order to take approximate account of finite deformations in a simple way the

velocity v(x,t) is defined as uormal to the deformed center-line, x being the

distance from the base to a typical cross-section measured along the center-

line curve (see Fig. IIl 21). The initial transverse moment-um and angular

1 momentum with respect to the base point B are, respectively,

T J = mvo(x)dx + GV (amL + G)V (3.5a)
0 0 0
"0

=LImvoxdx÷ V=1
Ho LGV amL 2 + GL) V (3.5b)

0 o 2 0

where a a 0 in the impulse (Parkes's) problem, a = 1 in the impact problem, and

m is the mass per unit length along the center-line. At time t > 0, with

T deformation of the center-line as indicated in Fig. III 21 the component of

momentum parallel to the initial direction of motion is
T

IL1

J(t) mv cos 6 dx + GV cos e (3.6a)
4 

~0 
-

Where e(x,t) is the angle of the tangent at x with the horizontal and e, = O(L,t)

is the angle at the tip. The angular momentum with respect to B is given

approximately by

fL

1H(t) = mvxdx + GVL (3.6b)

This correctly represents the moment of momentum about B for small deformations,

but ..- d dc cc f^ l- •.... oi-sat..... -" oly If the deformed center-line curve were
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a straight line. It is suggested as a good approximation for beams with a tip

mass roughly equal to or greater than that of the beam by the fact that the

final deformed shape of such beams has been found in experiments always to be

very closely linear outside a short hinge region near the base.

The equations of conservation of momentum for the beam and attached

mass are

ft
- QM(T)dT = J(t) - Jo (3.7a)

- JM()dt = H(t) - H°0 (3.7b)
0

where am nd Mm are the opposing shear and b,.nding moment at the base B; J(t),

H(t) are given by Equations (3.6); and J H are given by Equations (3.5)." 0

Boundary conditons at the base are

e6 = 1- (Ot) = 0 (3.8a)
a x,

Vb = v(O,t) = V [l - f(t)] (3.8b)

where for the impulse problem: f(t) = 1

for the impact problem: f(t) = t/t 0 , t < t

and f(t) 1, t > t
-- 0

As already discussed, our solution will be simplified by neglecting

inertia forces, and hence assuming that the shear force in the plastic region

0 < x < z(t) is independent of x, i.e. in this region Q = %(t). Therefore

dM/dx = -% and the bendiing moment varies linearly:

M M

-- - 1 = (-L- - 1 )(1 - -). in 0 < x < z (3.9)
p p
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r where H M(t) is the base moment and Hp Is the static plastic limit moment.

Using Equation (3.1), the curvature rate k is

12
H *(1 -)Pin 0 < x < z (3.10)

-- M

I where k (t) B(-- --)p.

p

In the region z < x L the bending moment is less than M ,and there-

2 2
fore Wx = 0; this segment moves as a rigid body. Thus the assumption

Q z Qm enables the curvature rate to be written as a known function of x in

terms of the unknowns k (t) and z(t), and from 3 2v/ax2 the velocity can be

evaluated in terms of i and z.
m

The evaluation of the momentum integral J(t) involves the slope angle

6(xt). This is related to v(x,t) by

3-63 (3.11a)

so that

elx 't) = • (x, -T)d r (3.11b)

0

The treatment of finite deformations is greatly simplified by the

further assumption that J(t) may be written for a uniform beam as

J(t) z m cos 0l vdx + GV cos 6 (3.12)

0

where 8 is the slope angle at the tip, x = L. This is strictly true only if

the deformed center-line is a straight line, but it may be justified in the

"general case. Consider the two approximations

SjI 
jz

(a) m v cos 0 dx m cos e1 vdx (3.13a)

jo 0
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SIIm(IL v cos 0 dx a m cos 0 L vdx (3.13b)

Jz #z

Experiments show the final shape to be nearly straight away from a region near

the beam base whose length is of the order of several beam thicknesses; this I

suggests that (b) is a good approximation. Although (a) is not so good an

approximation, it is nevertheless permissible because cos 6 differs appreciably

from unity only when z is small and the integral in (a) then represents a

very small part of the total momentum.

Then equations of the viscoplastic problem thus simplified can be

written in terms of the three variables, m(t), z(t), and 81 (t), after putting

. 1 1

Mm= LH t) .q(2 )PJ; Q..ik(ID)P (3.14)

The three equations in these unknown functions are

.tM 1 kL

- Jk(z- )P dt m cos 01 vdx + GV cos 61- o (3.1Sa)

"O L

+( M 2+)P dT m = vxdx + GVL - H (3.15b)

"0 0

81 = ft (L,T)dT (3.15c)
ax

The integrals in the right-hand sides of (3.15) may easily be expressed in

terms of em and z by using the expressions for -2v appropriate to the
ax 2

intervals 0 c x c z and z < x < L; for the first interval Equation (3.10) applies,

while for the second 2v .0 We have

ax2L
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if

a x : dtx( t J
a2 o

v(x,t) = V(t) + x 3-- a• -~ d4

Fo 0 X Z v z Km

For 0 x < z • = [1 - (a - 1)p +i
-- x- p + I1 (3.16a )

zkv~xt) v ÷ (x + • [(zZ~ 13} (3.16b)

For.z x l(t) (3.17a)
For z < x: M-x p

v(xt) = V + m x (3.17b)

zk
V(t) V + m CL (3.18)

b p + p +p 2

Evaluating the integrals in (3.15), we obtain finally the system

of equations:

- J-T (•)Pd' - V (mL+G)[l-f(t)Jcos 6 Vo(wnL÷G)

SmL3

m 1 2 3P+ - E-- {2 t z + 5- c)sCos
•(pi+2)L2 (p÷2)(p+3)L 3

: GL 2
÷ a z z Cos0

(p+{2) } co 1 (3.19a)
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2(p+2)L (pt2)(p+3)(p+L

I
&GL3  2
+z I- -& (3.19b)

p+l L 2(p+2)L

t t .

e. = e(L,t) = m - d, (3.19c)

"0 10

The particular forms for the impulse and impact problems will be

written. By definition the impulse problem ;,as a -u and f(O 1, and the

first two of Equations (3.19) become:

Impulse problem.

1 .3
M k 1mL 2 3

-- GV° + kVL p L2 ÷- + }0os 581 (3.20a)
L (p+2)(p+t.

It 1 b

K mL4  e_-k 24
4[,l+(-!.)PjdT = (LV + k) (=A +0b

tp - J pLl 3 L p+2 L2  (p+2)(p+3)(p+4)L
0

G

where k is the mass ratio, k -=

In the impact problem we have a I and f(t) = t/t in the tim,

interval 0 <_ t < tot and f(t) m I for t t t . If t is small it is reasonable

to take cos eI = 1 in the interval 0 < t t 0 Then the momentum Equations

(3.19a, b) become:

I
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Impact problem:

St A k m 3 2
p(VL+G)f (t 1 + cos I (3.21a)

p+1 [ mL• +2-k 2 3

V0  (~-9.)~ ~ 1? (p+t2)(pt3)L 3

04

t 2 kmL -k 2 4= [+ )PT Vo(E-1- + GL)f(t) p+k)K ++ L2
p (BI o 2 - ~ 3 -L F - 2 2 Z4-l )L PL(p÷2)(p+3)(p+4)L 4

(3.21b)

Initial conditions must be stated for both sets of Equations (3.20)

and (3.21). We have 6 (0) x 0 in both problems, but the starting values of

z and k are different. There is some arbitrariness; the choice of them

assumption i = m (1 - x/z)p means that exact initial conditions on velocity cannot

be satisfied. For the impulse problem where the disturbance originates at the

tip mass, we take z(O). L. For the impact problem the disturbance is felt

first at the base, and we take z(O) = 0. The initial curvature rate at the

base M(0) can be taken as zero in the general impact problem where the base

moves with velocity V0 (1 - t/t ) for t c to and is at rest for t > t .

The initial value i (0) for the impulseprroblem may Le chosen so as
m

to make the initial velocity pattern give the correct angular momentum.

Putting t = 0, z = L in Equation (3.20b), this gives

mL 2 k.•~P!~~. (0)2
k k +m(0 (p + 2)(22 + 9) ( 3:22a)

? kV -= {k .9
""O p + _2 IfP 31(p "+ 4)

Since Equation (3.20a) as it stands would not be satisfied with the above value

of & (0), it may be modified by replacing the expression in brackets on the

right hand side by the following;
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2 3
1{d k) + 1 z- 1 -+z I+ p +2)(p +3) YI "

L kY- + [ 0

3 With this change, the linear and angular momentum conservation equations both

give the same initial value km (0).

Equations (3.20) are essentially the same but differ in detail

from those solved by Ting (1964). Ting's "First Solution" omits the momentum

contributions for the plastically deforming segment in 0 < x - z. His

j "Second Solution" equations include contributions from these momenta; however

the contributions actually obtained from the assumption k = 4 (1 - !L)P were
m Z

modified so that they are both somewhat simpler, and so that the two momentum
equations give the same initial value for k .I

Numerical solutions of the viscoplastic equations (3.19) may be

carried out by a step-by-step procedure. Suppose the three functions are

known at time tj : k(t.), z(t.), and e (t ). To find their values at tjl,

one may guess (t.+l). Putting this in Equation (3.19b) one may solve the

resulting equation for z(t j+l). These values put in Equation (3.19c) enable

S1(t j÷) to be calculated. The three values are then substituted in

Equation (3.19a) as a check; if left and right hand sides do not agree the
calculations are repeated with a revised trial value of km (t j+l), and the

process is continued until agreement is obtained. The deformation stops

when the curvature rate kc is reduced to zero, corresponding 'ýo the bendingU

moment at the base being reduced to M .p

Calculations of this type were carried out by Ting 1964,) for the

impulse problem, using modified equations, as alreadý described. Since errors

were noticed in the published results in two of the four cases calculated,

all were recalculated. Table III 7(a) gives the results from the "complete

solution" (Equations 3.20) as well as from Ting's "first solution" in which
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momentum contributions from the [lastically deforming segment are omitted.
I

The differences are very small in three cases, and about 10 percent in the

third case.

Comparisons with test results are also indicated in Tables III

7(a)-(b), and in Figs. III )9(a)-(b). For nild steel the agreemen! with

observed final deformations of the viscoplastic theory is improved in the

,specimens with large tip mass (small 0) as compared with elementary rigid-

plastic theory. However when the tip mass is small ( 1 or larger)

the viscoplastic analysis leads to an underestimate by some 20 percent. This

is, however, much better agreement than that obtaine, by using Parkes's strain-

rate correction factor, which predicts deformations that are too small by

nearly 100 percent at F = I. For the tests on 6061-T6, Fig. III 19(b), the

viscoplastic theory leads to ar over-estimate (at e - 1), of about the same

magnitude as the error in the other direction obtained by use of a simple

correction factor on the plastic moment,

To summarize, we have shown comparisons between deformations

predicted by a viscoplastic analysis based on a moment-plastic curvature

rate relation of simple type (Equation 3.1) and test results for a particular

type of beam test, in whic-h a- impulse is applied to a mass at the tip of a

fixed-base candilever. The introduction of strain rate sensitivity into the

differential equations does change the pattern cf deformations substantially;

the deformations are more neariy confined to a region near the base, independently

of the ratio of tip mass to beam mass. Quintitative agreement of final

deformations predicted by this theory with those observed in tests is only

fair (Fig. III 19(a)-(b)), but is very much better than obtainable whmn a

simple correction is applied to the statically measured fully plastic moment,

Alao shown in Tables Il 7 (a)-(b) and Figs. 1i1 19 (a)-(b) are

4
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deformations determined from a simple approximation formula suggested by

Ting (I.... ). This formula w.l1 be discussed later and compared with other

approximate methods.

(D) Approximate Expressions

The complete solutions of the viscoplastic equations (3.20) and

(3.21) are lengthy, and it is natural to look for simplifications that will

retain essential features.

Immediate simplifications in the momentum equations of either the

"impulse" or the "impact" problem, Equations (3.20) and (3.2i), are suggested

from the fact that the exponent p in the strain rate law is large; com-

monly p > 4. In the moment of momentum integral, we may write

(t

IMp[ltA(T)]dr = Mp(l+A )t (3.23)

where

1

A~t) B

and A is a constant representing a suitable average of A(T) in the interval

(0,t). Numerical solutions show the actual variations of k (7) to be largem

during the deformation. An example of a calculated curve of ýM (T) is shown in

Fig. III 25(b). Although km first increases from 10 to 25 and then decreases

j approximately linearly to zero, the change in 1 + A(T) remains relatively smal

(Fig. III 25(a)). Until the final instants of the motion the variation of

j 1 + A(T) from the starting value 1 + A(O) is only some 7 percent. Hence it is
& (0)

a quite accurate approgimation to take A = A(O) = - p, corresponding to
o

the initial curvature rate.

Consider the viscoplastic equations of the impulse problem, Equations

I
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(3.20). The third term in the bracket of each equation is small compared with

r first. In the moment of momentum equation (3.20b), if p = 5 the third termII
is less than one percent of the first term under the worst circumstances when

k = 0 and z = L, and still smaller when z << L and k is I or larger. In the

transverse momentum equation the third ten.. is less than one percent of the

first if z < L/2, as is the case for most of the deformation period, Fig. IIl

25(b). The same remarks apply equally to the equations (3.20 for the impact

problem. Hence the following simplified forms of the viscoplastic equations

(3.20) and (3.21) apply with very good accuracy:

MAtdi GV - _mL2 ! + k) [Ik z cos 8-
p 1 2 (1 + k)(p + 2) L s (3.24a)

0 2

M (I + A )t = GLV - 0 mL 3(: k)[l - 2 Z (3.24)
p 0 a 3 (1 + k)(p + 2) L

where & (0) i
A=

with GV (p + 2) (

S( ) 3 (3.24c)
mL 3[9: + T3 T ÷ 1)])

The complete solution for several cases determines a curve of 0 as

function of time like that of Fig. Ill 27, the main feature of which is the

straightness of the curve except near the start of the motion, t = 0. This means

that a good approximation to the final value of e can be obtained by taking th3

;(t) curve to be a straight line cutting the time axis at t = tf and having the

slope of the curve at t = tf, Here tf is the instant whzn motion ceases,

O(t) 0; z(tf) 0. From Equation (3.24b) we have
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G LV •N (I A • ~', . ,3,1 k)-L0
p, + A -f - (3.25)

3 tf-
p o f

The approximate linear solution for 6*(t) is thus

3 1

mL (1 + k)i* = GLV - M (1 + A )t (3.26)
0 p 0

and the final angle is given approximately by

GV
2

6* : )o k(3.27)
vp 2Mp (I. + k)(l + A)

3 0

A formula for A was given in Equation (3.24c). This may be simplified0
a

and improved by dropping the term a-%(p + 1) in the denominator. This change

(slightly decreasing A ) is in the right direction to improve the linear0

approximation. Hence we obtain the following solution for the final angle

GV 2
8" 0 k (3.28a)

p (k + 1)(1 + A*)

GV (p + 2) 1
A" = [ o ]p (3.22b)

Ag 03 1 pO M
BmL3(k +

This formula was derived by Ting (1964) by an essentially similar argument.

The time at which deformation ceases is given to the same approximation

as

GLV
t -" 0 (3.28c)

p o

Finally, the equation for trarisverre mo.mentum conservatio'n together with

the above expressions for A* and t*, furui.shes an approximate formu'a for the

length z* of the plasti.- tone (av,,raged over the defornaftion time) as
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?• z* A*
0 (3.28d)

L0L 1 *A
* o

How well the predictions of the simple approximations of Equation (3.28)

compare with those of the complete viscoplastic solution and with experiment results

is showi by curves c in Figs. III 19 (a), (bW.

Considering final rotation angles, the approximate solution differs

from the complete solution by about five percent at the largest 0 (smallest tip

mass), but the difference is negligible at low 0 values. The complete solution

is closer to the test results for the final angles than the appropriate solution.

Thus, at the largest 0 values, the approximate theory predicts a final angle

about 20 percent smaller than the test values. The hinge lengths predicted by

Equation (3.28d) are larger than those evident in photographs of final deformations,

which show the length of the deformed region near the base as roughly four times

the beam depth, or one tenth the length. The formula predicts average z/L

magnitudes of the order of 0.5 or larger for mild steel.

To sum up, it is seen that the simple approximate solution furnishes

results in vod agreement with those of the complete viscoplastic solution, but

whose agreement with experimental deformation angles is less satisfactory. How-

"* ever, the agreements with experiment of both the complete viscoplastic theory

and the approximate formula over the range of 0 tested, are very much better

than that of the elementary rigid-plastic theory, either uncorrected or multiplied

by a rate correction factor as in Parkes's method.

S~mple approximate formulas for the im2act problem can also be obtained

from the complete equations, Lquatious (3.21).

In the same spirit as for the approximate solution of the impulse

problem, immediate simplifications can be made by dropping all but the first



145

term in the bracket in the right hand sides of Equations (3.21) a and b. In the

present case z/L = 0 at t = 0 and t = tf; z remains usually less than L/2 during

the deformation. A typical curve for z/L is shown in Fig. III 29(a), obtained

by calculation from the complete viscoplastic equations. Fig. III 28 shows the

near constancy of A over most of the time of deformation. If we again replace

A(t) = (K /B)1/p by a constant T, the equation of conservation of angularm

momentum (3.21b) becomes:

Mp(1 + A Vt V 2o (Lk + 1 )f(t) - mL3(k 1 (329)
p o 2 3

where for t < t f(t) r t/t, ; t to f(t) 1.

We have used, as before, the relation from Equation(3.19cý namely

k z
6 (t) =m , (3.30)

and we have written 8 in place of 61, for simplicity.

An example of a ;(t) curve is shown in Fig. III 29(b) by calculation

from the complete viscoplastic theory. For t > t the curve is nearly a straight

line. If we suppose t is small (t << tf ), it is a reasonable approximation to

assume a linear variation of 8(t) over the whole deformation time, and hence to

write

;mL 3(k + V mL (k + M-) - M tK)t (3.31)
3 0 2 p

According to this ewation the deformation ends at

ti V mL2 (k + 1
V = M (2 + 2 (3.32a )

S~V'mL (k 1 2-
o M)
f1M(1K( (3.32b) -

Ip U + A)(k +I3
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J! It remains to obtain a suitable value for A from the viscoplastic

theory. We can write the linear momentum equation (3.21a) in terms of 6 and

2km , after eliminating z by use of Equation (3.30), and dropping the z and

z terms in the bracket. Then the equation after differentiating with respect

to t is

ii

t-> to* f(t) 1,

H A(t)(t) M e mL 2(k + -1)(p + 1)
p m 2

We may set A(t) = A, and evaluate

m (0) i/p

Taking 6 and 6 from Equation (3.31)and putting t = 0, ye obtain

(k+ )12
(0) 1+A _(p+ 21 2

S L(k +j)
3

and

1 2+ Vo(p + 1) (k + 1- I
2 2 (3.32c)

A LB (k + 1)2
3

For given V and beam constants the above furnishes an estimate of A that can be

used in Equations(3.32a, b). Finally, from the linear momentum equation with

t = tf we can obtain an average value of the plastic zone length as

- A 2
Zk 

1

Finally, it is worth noting that the approximate viscoplastic solutions

written above are the same as those that wouid be obtained if we assumed in the

"beginning that the deformation is governed by an expression of type
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Sv(x~t) v" *t

This represents a deformation in a fixed pattern, or mode shape, and such a

solution may be called a mode solution. The use of such forms of solution to

obtain approximate solutions of dynamic loading problems has been discussed

by Martin and Symonds (1966) for general one-dimensional structures Cf rigid-

plastic material. It can be shown, for example, that for any such structure

subjected to a loading of impulsive type (i.e. with prescribed initial velocities),

the velocities decrease linearly to zero. Criteria were derived for choosing

the mode shape so as to give the best approximation to the complete solution.

The approximate solutions derived in the foregoing discussion of

viscoplastic solutions were found to be of this type. In other words, when

rate sensitivity of plastic properties is included in the analysis, the

deformation tends to become of modal type, in these examples. Hence these

results provide some indication that the simple mode approach may give better

results when applied to a rate sensitive material than for a rate independent

material. However the number of examples for which comparisons with

experiments have been made is too small to allow firm conclusions of this

type.

Recently Bodner (1967) at Technion-Israel Institute of Technology has

made a new series of tests on miid steel cantilevers with tip masses, similar to

the "Impulse Tests" described above (pp. 1.12-122). The new results were closely

cnmparable. They provide desirable coonfirmatior of the viscoplastic analys'Žs

and of the usefulness of vv- mode apprcii mation technique in this problem. In

fact, strain gauge measurements gvve quite striking evidence that the actual

deformation process closely resemblen that assomed in the mode solution, and pre-

Sdicted by the full an.akysis with strain rate dependence.

I
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1 4. Zxperiments of Florence and Firth

Florence and Firth (1965) hav2 reported tests on supported and clwaped

beams of steel and aluminum alloys, with uniform loads applied explosively. The

tests were designed to investigate especially the applicability of rigid-plastic

I theory. They provide a valuable complement to the tests on cantilevers dis-

cussed above. They were comprehensive, well planned and executed tests. Never-

theless they also illustrate the basic difficulties in making and interpreting

J tests on dynamic plastic deformations of structures.

The elementary rigid-plastic solution for a supported or clamped

beam with initial velocity V over its span 2L is obtainable by simple

r momentum considerations (Symonds 1955). Writing V° = II/m , the reaults for

the final deflection yf and final angle 6. as functions of position can

be written, for the case of pinned ends, as

Yf I 2 L

- = WmM L- (4.la)
L p

2

Of= (3 2 (Lý.lb)

3 where I is the impulse per unit length and x is measured from the end,

Fig. I11 30. The quantities of main interest are the final central deflection

Yf(L) and angle at the support Gf(0) , which are (for pinned ends) written

] as
Y f (L ) 6 th ( _) I L2

Yf - h D c)l romp(Jc
L- L-Tý f th (.c

For clamped ends M is replaced by 2M . The notation in equations (4.1c) is

Sthat of Florence and Firth; the superscript (I) distinguishes the elementary

11f
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rigid-plastic solution from those including corrections for finite deflections

and strain-hardening.

As mentioned, end conditions of simple support and clamped ends were

used, with design so as to permit free axial motion and enable axial constraints

to be negligible. Their materials ind properties are listed in Table 10.

TABLE III 10

Material Yield Stress Strain Hardening Modulus
- _Fi _1 (psi)

Al 2024-T4 52,000 0.329 x 106

Al 6061-T6 40,000 0.114 x 106

CR 1.018 Steel 54,000 0.2 x 106

Annealed 1018 Steel 43,000 ......

In all tests the beam dimensions were nominally 18 inches in length, 1.0 inches

in width, and 0.25 inches in depth.

The loads of impulsive type were applied by detonation of sheet ex-

plosive (DuPont EL-506D), over neoprene layers to prevent L:<lling. The initial

velocities, presumed uniform because of the large speed of the detonation wave

relative to beam propagation speeds, were measured by streak photography for

four aluminum and four steel specimens. In this way a calibration was obtained

in ter=. of impulse per unit volume of sheet explosive. This quantity was

found to have constant values for beams of the two materials, namely 2.9 x 106

dyne-sec/cm 3 for aluminum and 3.25 x 106 dyne-sec/cm 3 for steel.

(It is not explained why the values for the two materials are dif-

ferent. For a given geometry, explosive material and burning time, the impulse
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! should be a constant on a stationary surface. The reduction of impulse for

aluminum beams is perhaps associated with the larger velocities attained

by these specimens in the "delivery time" of the impulse, given as about

' 33 micro-seconds. But if this is the explanation, then presumably a sim-

ilar variation of velocity occurred in the test series, since the thickness

of explosive sheet was varied to give the desired range of initial veloci-

ties.)

Since the tests were designee to study the validity of rigid-

plastic analysis, they covered a range of energy ratio R from less than

unity to 6 or 7, ( R = initial kinetic energy divided by maximum elastic

strain energy). The final deflections ranged from a small fraction of the

half-span length L to more than ½L , thus up to about twenty times the

beam depth. With deflections as large as these, the precise support con-

ditions are important. The simply supported beams had pins which moved

inward on bearing blocks as the beam deflected. The clamped beams had each

of the "built-in" ends in a close fitting channel which permitted material

to flow into the span. Thus, duviig the tests on supported beams the span

decreased, while in the tests on clamped beams the span remained fixed

while the developed length increased.

If appreciable constraints against axial motion were present, these

would cause axial forces which (for full constraints) would dominate the

motion for deflections appreciably larger than the beam depth (Symonds and

Mentel 1958). That such constraints were negligible was indicated by the

authors.' check on one of the tests (Al 2024-T4 with clamped ends) which

showed an absence of longitudinal strain at the middle surface; in this test

the strain in the outer fibers reached 4 percent and the deflection was 0.43L.



iii
152

The authors also gave modifications of the rigid-plastic analysis to take

approximate account of finite deflections. These resulted in corrections

which were in general small, rarely exceeding 5 percent. The authors seem

to have effectively disposed of questions arising from the finite deflect-

ions of their specimens.

Florence and Firth presented their results in the form of tables

giving the final midpoint deflection and the slope angle measured near the

supports. They also displayed results of several test series by means of

plots of the midpoint deflection ratio 6/L against the impulse per unit

length I1 ; and of the dimensionless displacement y/L against position x.

Typical plots of both kinds are shown in Figures III 31(a,b,c).

These plots show the typical discrepancies between the predictions

of equations (4.1) and the test results. The test deformations were smaller,

by amounts from about 25 percent to over 50 percent, compared to predict-

ions of the elementary theory. The inclusion of corrections for finite

deflection led to minor improvement, while that for strain hardening led

to substantially better agreement, Table H!T .11 sum_.arizes these co.-P-As ..

The corrections for deflection effects and strain hardening will

not be discussed here in detail, although they are of great interest. Both

involve approximations, but seem quite reasonable. The theory of Florence

and Firth which gives their strain hardening correction is bared on assuwrp-

tions similar to those by Cowper and Symonds (1957): the hardening was ex-

pressed by a linear moment-curvature relaticn; the length of the hardening

zone was assumed finite but small compared to the span; and the strain

hardening was disregarded in the initial phase (in which distributed

deformations occur). The accelerations in the plastic zones are taken the
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same as in the rotating segments, These and other assumptions avoided I
the difficult problem of a nonlinear partial differential equation with U

conditions at moving boundaries. Indications of the magnitudes of the cor-

rections due to strain hardening, in the authors' theory, are shown in

Figures III 31(a,b,c), and in Table I11 11.

As illustrated in Fig. III 3ic, the experimental deflection curves

were nearly straight except in central regions. This implies that the

first phase of the rigid-plastic theory, in which the general curvatures

are produced by travelling hinges, is reduced in importance in the actual

behavior. The effect is the same as that predicted by the analysis includ-

ing rate sensitivity, as discussed in the preceding 'ection. since l loi'ence

and Firth's analysis of strain-hardening does not affect deformation in the

first phase, and reduces deflections in the second, it has the opposite

effect, tending to increase the general curvature of the specimens.

The same questions raised earlier about experiments must again be

asked. The discrepancies between experiment and theory could be attributed

not only to strain hardening, but to elastic vibrations (especially for

beams of aluminum alloys); strain rate sensitivity (especially for the

annealed steel specimens); axial constraints; shear deformations; or to

combinations of these. What can be learned from the tests about the rela-

tive importance of these?

It is of interest to re-plot the experimental deformnatonz as

ratios to the quantities from elementary rigid-plastic theory. As in the

similar treatment of test results for the cantilevers, the new plots pro-

vide help in answering the question stated al'ove.

Figure III 32 gives a plot of the ratio of experimental angle to
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the angle predicted by the theory without strain-hardening, against values

of the applied impulse as abscissa. There is a very steep rise in the

curves over a relatively short range of impulse values, and the angular

ratio tends to become constant at about 0.6 for most plots. The poor

agreement in the low impulse range is probably due to elastic vibrations.

If the plot is changed to that of the ratio of the experimental angle to

the angle predicted by analysis including strain-hardening, no signifi-

cant change in the shapes of the graphs occurs. The plots of deflection

ratios against impulse are shifted upward from those of Fig. III 32 so

that the horizontal portions of the curves are at 0.7 approximately.I

To further investigate the evidence for a strain-hardening influ-

3 ence, the ratio of the experimental angle to the angle predicted by the

elementary theory is plotted against the experimental angle in Fig. III 33.

At the large angular deformation values the curves should show a downward

1' slope if strain-hardening influences or axial constraints are important.
J

This does not seem to be the case. It strongly suggests the presence of

other influences, In particular of strain rate sensitivity.

Figure I11 34 shows the variation of the same angle ratio plotted

I against R , (the ratio of input energy to the maximum elastic bending

energy the beam can absorb). For R> 3 the angular ratio is substantially

constant for all materials. Taken by itself this indicates that for R> 3,

j approximately, elastic effects are no longer important, in these tests.

In discussing Parkes's solution to the fixed-ended beam problem

Sin Section 2 of this chapter a "mode approximation" solution was described

(Martin and Symonds 1966). This proceedirewas applied tV the present

problem with the effects of strain hardening introduced into the analysis,



using the linear relationship I'ctween moment and curvature and the same

coefficient ýk as used by Florence and Firth. The techniquewas described

by Symonds (1965) for the impact cantilever test. Fig. III 3b shows a

comparison between the elementary rigid-plastic solution, the solution of

Florence and Firth with strain hardening only, and the mode solution for

various values of the parameter z/h where h is the beam depth and z

is the length of the plastic region. The great advantage of the mode sol-

ution is the ease with which approximate final deformation values arc

obtained, when strain-hardening or other secondary effects are put into

the analysis. It has the disadvantage that one must guess a suitable

value for the parameter z/h , although for a considerable range of z/h

the rhift of the deformation curves is slight. The fact that the final

deformed shapes of the test specimens were relatively straight makes it

plausible to expect the mode approximation method to be valid. The

curves given in Fig. I11 35 do show better agreement than the curves from

the elementary or the strain-hardening-corrected theory of Florence and

Firth.

This observation suggests the use of a strain rate correction,

either in an analysis analogous to Florence and Firth's for strain hardening,

or in a mode approximation solution (as by Symonds (1965) and Bodner (1967)).

The latter has been done, although the plots are not shown. Using again

the power type formula equation (3.1) for the strain rate - overstress

dependence, with constants D = 40 , p = 5 for steel; D 6500, p = 4

for aluminum, leads to the surprising result that the corrections are too

large for steel (both cold rolled and annealed) and too small for the

aluminum alloys. This is opposite to what would be expected from the known

1|
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strain rate behavior of these metals; annealed mild --e! ..... 1c cx.....

to exhibit stronger rate sensitivity than any of the others. It is nctable

also that the general extent of disagreement with the uncorrected rigid-

plastic theory, as indicated by Table III 1i, is about the same for all

the test metals: aluminum alloys, cold rolled steel, and annealed steel.

Since the strain-hardening slopes (Table 111 C) of all the materials are

not widely different, the lack of strong variations in these disagreements

S- with elementary theory here is an argument for strain-hardening as the

leading secondary effect, contrary to the indications from Fig. III 33.

It is seen that the analysis of Florence and rirth's experiments

leads to conclusions rather different from, but less clear, than those

deduced from analyses of experiments on cantilevers in the previous

S, Sections. The comparisons with elementary rigid-plastic analysis show that

-this approach, in the authors' words, "serves as a reasonable first-order

theory". The plots of rig. 111 34 would indicate that the neglect of elastic

deformations is permissible for loadis such that the energy ratio R > 3

On the other hand the plots of Fig. Ill 33 by themselves suggest that

strain-hardening is not the main source of discrepancies even for rotations

larger than 0.5 radians; if it were, the agreement with an analysis neglect-

ing strain-hardening would get worse and the trend of the plots would be

downward. It is also possible that both elastic deformations and strain-

hardening remain important, and that the two phenomena counterbalance each

other in the region where the impulse and deformation angle are large.

Similarly an interaction between elastic deflections and strain rate effects

I may be occurring.

j To sum up, while the experiments on cantilevers with tip masses of

j
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Parkes, Bodner and Symonds, and recently Bodner (1967), have given definite

indications of the dominant role of strain rate sensitivity, and of the

applicability of mode approximation techniques, the experiments on supported

and clamped beams ot Florence and Firth indicate that the discrepancies

between predicted and observed deformation magnitudes in their tests stem

rather from interactions between two or more secondary effects. Further

research is needed to fully distinguish the roles of elastic deformation,

strain-hardening, and strain rate sensitivity, without neglecting attention

Vo the possibility of important axial constraint effects and plastic shear

deformations.



Figure Cajtions for Chater I1I

Figure Cap-ion

IIl ! Summary of caicuiated• a•dl .. u1... f:r cold-
rolled steel beams, adapted from Duwez, Clark and Bohnen-

S~blustklgý0).

III 2 Comparison of angular deformations measured in tests of
Duwcz, Clark and Bohnenblust (1950) with predictions of
elastic-plastic analysis and of rigid-plastic analy-is
with inclusion of several secondary eflccts.

I11 3 Impact of a mass on a long beam: diagrams for rigid-plastic
analysis.

III 4 Experiments of Parkes and tVpical final shapes cf specimens:
(a) tests on cantilevers (Parkes, l (1,) tests on fixed-
ended beams (Parkes, l.956, 1958). Thc falling weight has
mass G, initial velocity V

III 5 Parkes's cantilever test: diagrams for rigid-plastic ana-
lysis. The striking ,nass G is assumed to stick to the beam
after impact, 5ut is o'n:.tOd in sketches (b) and (d).

III 6 Results from Pc.ikes's (1955) tests on mild steel cantilevers,
shown in comparison with deformation angle predicted by rigid-
plastic analysis using static fu'lyv -astic momcn-. 0 is
given by Equation (2.10); 6 = mL/2G.

III 7 Parkes's (1955) tests on mild steel cantiievers: test defor-
mation angles are shown in comparison with magnitude predicted
by elementary rigid-plastic analysis, with dynamic plastic
moment substituted for the static value.

111 8 Parkes's (1955) tests on mild steel cantilevers: comparison
of test angles with elementary rigid-plastic theory. Each
pair of test points joined by a line has same 3 (same Speci-
men geometry) but different velocity and final deflection.
If ripid-plastic analysis is valid except for omission of
strain-hardening, ar-reement with theory would be worse at
larger strains; in fact, apreement is better at larger strains.

111 9 Parkes's (1956, 1958) tests on fixed-endod bezc.s: patt ins
of deformation in elementary ririd-plastic analysis. Sketch
of test arrangement does not show the actual end-fixing devices,
which prevented rotation but permitted axial motion.

11I 10 Pattern of configuration assumed in the "1mode approximation"
solution, with one degree of freedom.

SIIlI 11Results of Parkes's tests on fixed-ended beams (parkes 1956, 1958),
and comparisons with theory. Displacement y in inches of impacted
point is plotted against length ratie r = 1,/'2 with constant Lo
as shown. Curves were calculated from rigid-plastic "mode approx-
imation" theory; full curves use static fully plastic moment,

I
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Figure Caption

Ill 11 (cont.) dashed curves use dynamic plastic moment, corresponding to
strain estimated from Equation (2.29), hinge length taken
as 0.5 in. in all cases.

1II 12 Results of Parkes's tests on fixed-ended beams: ratio of
test deflection to deflection predicted by rigid-plastic
(mode approximation) solution using static fully plastic
moment.

III 13 Evidence from Parkes's tests on mild steel fixed-ended beams
concerning influence of strain rate sensitivity of fully
plastic moment. Pairs of test points joined by lines have
sdme input kinetic energy but different velocity. Plot is
of ratio of test deflection to that predicted by ririd-plastic
analysis (mode solution) using static fully plastic moment.
(Compare rig. III 16).

Ill 14 Lower yield stress dependence on strain rate of mild steel
according to tests of Manjoine (1944). (See Fig. I 6 for
comparison with other strain rate test results). Curve of
dynamic plastic moment was derived by Parkes (1955) from
Manjoine's stress curve (method not specified).

III 15 Curves used by Parkes (1956, 1958) for dynamic plastic moment
of duralumin and brass as functions of strain rate. Dynamic
yield stress data for duralumin attributed to Klinger (1950),
Evans (1942) and Whiffin (1948); for brass to Jones and Moore
(14O). (But see Fig. 11 18 for actual curves of Evans for
duralumin and brass, showing these metals as rate insensitive
up to about t = 6 sec' 1 .)

Ill 16 Parkes's test results for mild steel fixed-ended beams: Lom-
parison with rigid-plastic analysis (by Trode approximation
solution) usinp dynamic plastic moment. Compare this plot with
that of Fig. III 13 using static plastic moment.

III 17 Static moment-curvature test dianrams of metals used in
Parkes's tests.

III 18 Tensile impact test curves of Evans (1942): 0 = "yield point
stress' ; c = "tensile ztrength". 0m

III 19 Comparison of (a) mild steel and (b) 6061-T6 aluminum impulse
test results of Bodner and Symonds (1962) with elementary
rigid-plastic theory and with theories taking account of strain
rate sensitivity. Curves (A) and (D) take F a- constant with
respectively the static and appropriate dynagic magnitude;
curves (B) and (C) take M as a function of local strain rate.

I11 20 Impulse test results of Bodner and Speirs (1963) on 3003-H]4
aluminum at (a) room temperature; (h) at 212 0 F; (c) at 400 0 F.
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III 21 Notation for "impact'problem: cantilever with imposed base
acceleration. Deam may be taken as initially mov;ng with
constant velocity V ; then base is brought to rest in a
specified short tim? to.

1I1 22 Fatterns of deformation for the impact problem; regions of
plastic deformation of opposite signs are indicated in (C).

III 23 Curves summarizing how the initial deformation pattern in
the impact prxoblem depends on the base acceleration V /t
and the mass ratio k = G/mL. The curves show where tde 0

negative moment has its largest magnitude for a piven 2 a and
k. The acceleration plotted is dimensionless, a = mL Vo/Mpto
(From Ting and Symonds, 1962).

III 24 Comparisons of impact test results on (a) mild steel and (b)
6061-T6 alvainum with predictions of elementary rigid-plastic
analysis. Also shown are a curve representing the approxi-
mate viscoplastic solution due to Ting and Symonds (1962)
and one result from the "complete" viscoplastic solution of
Ting (1963). Test deformation angles are shown for the test
"points.

Ill 25 (a) Representative computed curves for the impulse problem of
A = (Rm/B)I/P and A/z as functions of time, from Ting (1964).
Note that I + A is the ratio of dynamic moment at the base
to the static fully plastic moment; F, A/z is the shear force
at the base.

(b) Representative computed curves for the impulse problem of
the length z of the plastic zone and the curvature rate ým
"at the base, as functions of time (from Tinp, 1964).

III 26 Comparison of viscoplastic theoripq and tcst results with rigid-
plastic solution of impulse problem.

III 27 Representative computed curves for the impulse problem from Ting
(1964); note nearly linear decrease of angular velocity ti

III 28 Representative computed curves for the impact problem, from
viscoplastic solution of Ting and Symonds (1962); curves are for
dynamic moment at base M /M and shear force at base q.

mp

III 29 Typical curves for impact problem from Ting and Symonds's (1962)
viscoplastic solution.

"(a) shows plastic zone length z and curvature rate at base ým
as functions of time.

(b) shows nearly linear decrease of angular velocity 01 as
function of time, t > t 0

II
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111 30 Notation for tests and analxses of Florence and Firth (1965).

III 31 Typical results of Florence and Firth (116S): (a) and (0)
show central deflection as; functions of impulse per unit
lcngth; (c) shows final deformation curves. Superscripts
have the following meaninp: (1) desieinates elementary ririd-
plastic solution; (2) desirnates rigid-plastic solution with
co rection for finite deflections; (3) desipnates ripid-plastic
analysis with strain hardeninp, included.

111 32 Plots from results of florence and Firth's tests (1965); com-
parison of dvformnition angle (iear support) observed in test
with uncorrected rinid-plastic theory -lotted arainst unit
impulse. If this type of analysis is valid, and disdrccrt
is attributed to strain hardening., the discrepancy should
increase as the load impulse increases; plots show opposite
trends.

IIi 33 Plots from results of Florence and Firth's (1%96) experiments.
Values of test deformation angle divided by, ,rediction of
uncorrected rigid-plastic theory are plotted as function of
experimental anple,

1i1 34 Plots from results of Florence and Firth's (196S) experiments.
Values of test deformation angle divided by t-redction of
uncorrected rigid-plastic theory are plotted apainst energy
ratio F.

III 35 Comparison of deformation anrles observed in Florence and
Firth's (1965) tests with elementary ripid plastic solution,
with Florence and Firth's solution correctinp for strain
hardeningý, and with "mode approximation" solution considering
strain hardening.



DISTANCE ALONG BEAM (in)

0 25 30 35 40Q

U.

o (a) DEFLECTION CURVES V I100 ft/sec

IMPACT DURATION 0.87 x IO-sec
EXPERIMENTAL CURVE

if THEORETICAL CURVE

THEORETICAL ASSUMING ELASTIC BEAM

10,000 co---- 01I0,00 FROM TESTS--_&,__, w
FR .T.T - ----- -J ELASTIC PLASTIC

TH~EORY 00

,w PPRXMATE CURVE ,
USED IN--
CALCULATIONS a:

1,- ,' 10 0~ fps
, I I

* _ . .. LO..... ._ __ IJJ 0,I I , I ,

0 0 5 10 15 0 .01 .02 .03 .04
z -2 -/
" CURVATURE(IO in .V/-TIME} (seC

COLD ROLLED STEEL

(b) BENDING MOMENT- (dW ANGLE 8 VS '/t

CURVATURE RELATIONS 20 ____

20/"SIMPLEST RIGID-
_ _ PLASTIC THEORY Yj/

IAJ= 0.2 /0, ELASTIC-PLASTI .,

THEORY-, 0 x
S0.1 Q o10 f
< _ 'THEOR.

ASSUMING
z" 0' F , plý' I/ ELASTIC

00 40 80 120 160 0 I E
THEOR.

IMPACT VELOCITY(tf/sec) 'ELASTIC-

(C) ANGLE e VS IMPACT - P.ASTIC
VELOCCTY If 0 -, J i I

VV0  0 .01 ,02 .03 .04

/(TIME) (sec'/')

(e) DISTANCE x 0 VSvrt

TESTS ON COLD ROLLED STEEL BEAMS
DUWEZ,CL.ARK AND 80HNENLUST (1950)

FIG. III I

a



z -
o to

3ww

al 00i- Q
LL a: z-0

Z W 0 0
LL,>

0~

z 0oc
(SZpO) 0 WOI1Vj.O

0 Ic



I
I

I •vo
I c!i

(a)

0

( b ) b )

(C) v 0

v=w( Z -X) x -
V V

I

T M(d)

I

T ( :5 x

zI

.p
• _M p

F]



tv.o

HEAVY
STRIKERS ýHEAVY

STRIKERS

LIGHT

STRIKERS LIGHT
STRIKERS

(a) (b)

FIG.ILE 4

(a) ____________(d)

(b) i

(C) M

-MpF

FII



j C< x
aQ

>- LiC wd z

(r LI V)C - LL)

I4 41% U)_

0 0

0 0 o0
NN

I Li

0

.00

0a

0 0)
o to

0i 0 i )

U. )

o~~~ 0
- 0 00-U

) - p
00 0r 00

>: -0 0 a.l

00h 0 0l

01 0E 0
a 00 0 00

00 00
00 0



(9 w

I~ w
E l - .( I--(I _

I.- -

U, 0

z 0 U/)

4) E; '1 .4-L

IhJ CD 0. CLo

J 0c 01- (

0 w: o

-~~ cc(3 .

-ow

OD (D

05 0 l 05

'C.3



if

,vo

4A GU0

k-' L1t - • L2 -

* PHASE±

-Mp+M M
-4  M PHASE2

II

M pMp

Ab• PHASE 3

A Hv

PHASES OF MOTION ACCORDING TO ELEMENTARY RIGID-PLASTIC
SOLUlION OF PROBLEM OF CLAMPED - ENDED BEAM UNDER

IMPULSIVE LOADING AT AN ARBITRARY POINT. THE STRIKING
MASS G IS ASSUMED TO STICK TO THE BEAM AT THE STRUCK POINT 0

FI G.JII 9

p p

1-- IGHASE 30



II IIII

It le ii 1

-J h

II}

\\'

\\
N

1 ! - -- -



ILO

.00

-- 4

0 0 0 ND

'3O I-N1 10 3 --A



0(

0'0

LL

00

- ~ Lo

6
S3H3NI NO0113]-1 z13q



iii

0~0

S3HDNI - O 113TA3



-Jj

LC~J

~jU) to
CY CY -

U) IjI -j1

0 Ln 0



II

0 CD

Q: 0

tor(

LiL

0 41

- 10

o 0



U,)

0)

Li,

(I o0 <
(I) -

U)f

w LLi

0 (0nL

0-

V)

0 z-

00

QLiJ

0

>- 0
a U



a: a

If)

6 ))

00

oL 0
W4

Cf0

z
4ZZ LL

04

-z

(fu,
xL

06 0



wV
CL Y

(J~(D

w

0. L0

I WD

'*L) o

w & 00W -
ciZ jO LL

I Li

ow -

-- V\I L

0 0



.300- MILD STEEL MID 228 in-lb.

o - - - - -DURALUMIN MID =256 in- lb.
0o BRASS M=228 in-lb.

0

z 0 2 4 6 8 10 1214±16

DEFLECTION AT TIP INCHES

STATIC TESTS ON CANTILEVERS

'(PARKES, 1958)

FIG.m3 17

35 1 1_T _

30.
_ _ _ _ _ _ _ 2 5 -_ _ _ ~M IL D S T E E L

25
C0

wI 20 _ _ _

22

±.0 ±A10 20
4Esec.'

*EVANS (1942) TENSILE IMPACT TESTS

FIG. lE18



U

2.o I• ------EXP
2.0[

1.8

1.6 /
/

1.4 - eEXP

1.2 - 0 P

1.0 /EXP

o7a . I I 18 EXP

0 / 1--

0.8 
a401V

0.6 - "26
MILD STEEL-IMPULSE TESTS

BODNER AND SYMONDS

04 EXP ARE AVERAGES OF TEST RESULTS FOR GROUP OF TESTS

CURVE 0FROM THEORY
A-ELEMENTARY RIGID PLASTIC

0.2 - COMPLETE VISCOPLASTIC

C- VISCOPLASTIC APPROX. FORMULA

D-ELEM. RIGID PLASTIC CORRECTED BY PARKES' METHOD

a 1 ,_I_ I I
0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 131 19 (a)



0

0 cr

w = z

0 10:1 1
0 -j 4r - g

CL z 02-
UI 0

9L 0

7Z01 2i1 aztaQwL. 0 .. ~I
U0L - 0:-1 z

&- 0
0- 0

w (r L) c

z~ LU0. 0. 0

CLL 4 2 0 > cV

o> > > w

31 LL Ld

S o

gL 0IM -

CZ)I



I
- EXPERIMENTAL POINTS & G4ENERAL TREND OF f

EXPERIMENTAL RESULTS,

(3o 0 - - - CORRESPONDING THEITICAL VALUES &'
GENERAL TREND FOR RATE LAW (0),O.•273,OOO/sec,,p, H

-.--.. CORRESPONOING THEORETICAL VALUES 15
GENERAL IREND FOR RATE LAW (b),

I 500/sec., p.4

0.4

0.3

0.2

w z

0. . . . . . . g 0.9 1.0 1.1,1.

x0. -E. PERIE-EXPERIMENTAL ANGLES
TEND OFEPERINDICATED

z0

10.6 "• - -. X .

0.7.9

..-- w 22.90

!a0.70.5

4-F

S0.46

z 0.5'w0.3

S0.2
a.

KI I I I I I

•l 0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

.9 19;: nL/2G

IMPULSE TEST RESULTS AT ROOM TEMPERATURE

FIG. M 20 (a)

,,--(b X--EXPERIMENTAL POINTS 8 GENERAL
Cbl~ TREND OF EXPERIMENTAL RESULTS,

" 1.2•_

w: 1.1 46.00

Ui 0.9- 29 "7*

•a0.8 EXPERIMENTAL AGE NIAE

S0.6-

I-1: 0.5

x •0.3

wo 0.2

,.• 0.1-

, 0 ,1 0.2 0.3 0!4 0!5 0!6 Cb0!8 O.8 0,9 •.L0 1.2 ..

R=ML/2G

IMPULSE TEST RESULTS AT 212*F

FIG. =rr20(b)



ca cb

i,!
x-EXPERIMENTAL POINTS 8 GENERAL TREND

0 OF EXPERIMENTAL RESULTS

3 o CoRRESPONDING THEORETICAL VALUES FOR RATE
LAW (c0: OtO..45/sec., P - 12

; CORRESPONDING THEORETICAL VALUES FOR RATE._•LAW (d): D - 0,275/se¢. pm 8

u - 1.. .

0.9 EXPERIMENTAL ANGLES INDICATED

t- G 0.7 f 25

-• 0,7 • •1 32,5

"J ý- 3o .10 6- -v°--
0 o. - X a~ 23V 232

FI0 .202 (c

oll



I ___"_

I _L(o

Vo(•O

IG
I I M

FIG. M-21

(b)

(d)

FIG. MI 22



I
I soo I\1rI !

* 200 -

I
210!

!
'• 90-• k=t OO

g 9o-- kkS80
70O k =I60- FSECOND HINGE DEVELOPED

60 IN SHADED REGION

-J

I 30 C,(k)

20
POSITION OF THE

r MAXIMUM NEGATIVE

MOMENT

10-- k=O

k=I
7-

-~i I I I 1 iI I

0 A .2 .3 .4 ,5 .6 .7 8 .9 10

FIG. "lI 23



w L)

cc C/)

in 0

0 ~0)

40 vi I

I.- V vi >

CY 0
00

qt w)

cn a)
0 7 0

Iz-

40

-000

0 0 N

X IL



w1 1
4x cn

0 
1

00'

(- 0- -

0Q W 0 J 
0

0 0

.-J P- 0 0 VL ~ ~ ~ . £

a 00 4

~DO~i N.

o >~

cm 
0

zil W~ 
J LA..

zI I

~0

< N

0.



2,5 1+

1.5

1.0

0.5

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 tt=I.635

t

FIG. TIT 25 (a)

1.0

251-Z Zt0.8

20

0.6
15 I-Z

K'm •m"€
km 

- 0.4
10 I0 ~I-Z(t) .

5 - 0.2

S _ __0
0 0,2 0.4 0.6 0.8 1.0 1.2 1.4 tf=1. 6 3 5

t

CALCULATED RESULTS-MILD STEEL BEAM
CIMEN ES. IMPULSE TESTS OF BODNER

. SYMONDS (1962)' k=1.7

FIG. M 25 (b)



f

w

z

I0

/ 
~ci

p.z 

w

8 010
cI CC

I 
0

(n Ea c - j

0 uJ 0 D

w a_

w a -MK1

0 0)

>___ I 
0

00

0 

0



i
I

1.5

19If 59.20 8 l

P~l 500

4 00

300
0.5-

200

100

0/.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 tf=1.635

FIG.T 27

15-- 2.5

q

_ M m10 - .

_ Mp

5- -1.0

I

0 to 0.1 0.2 0.3 0.3643
TIME t

FIG. m 28



1.0

SA 0.9

n i00 -A0.7

0. 6 z

z(t) -0.4
500 L

0.2

0 0
0 to 0.1 0.2 0.3 0.3643

TIME t

FIG. MI 29 (a)

2.0 200
; 19.3 7

1.5 e (2,t) - 15 0

10 (2o) 0

0.5 -500 e,

0 to 0.1 0.2 0.3 0.3643
TIME t

FIG. 1I[ 29 (b)



I

A~ Iclo,

' M11 I I

CLAMPED HALF-BEAM DURING PHASE 2

FIG., l 30

0.5 _ _ _
0.4- 02L-- _ .5 1 1 1 1
0.4 0.4-

~_J0.

0.1 0L- I i

0 0.05 O0.O O15 0.20 0 0.05 0,.10 0.15 0.20 0.25
li - lb-sec/in. li - lb-sec/in

IMPULSE VERSUS CENTRAL IMPULSE VERSUS CENTRAL
DEFLECTION - PINNED (PS) DEFLECTION-CLAMPED(CS)

C.R. i0i8 STEEL C.R. i01. STEEL

FIG. M 31(a) FIG.iM 31(b)

0.5 1I I I

0.4-~2
-J 03- _ (3

'0.2
-EXPERIM4ENT FS

C IL I II

0 0.2 0.4 0.6 0.8 0.1

PERMANENT DEFORMATION
CURVES - PINNED
C. R. 1018 STEEL

FIG. M 31 (c)



z

w~z

I- U)CI ii
x 0 aii

-J - -j 1

0x0
in 0

0 0 0

24 G

0 0 IV) .M

-- o 2 --

g n 0 3 w (n 0
-j 0 W-1

m M-
a. CL-

cm 0

-. *X

o do

0 \\ C

0 0 0
-. (0 N 0 0

(b C



0U

z w

LJ

0

Ij 0

(z 0- 0
Cl r I 0

C F <W0 Z Wf

0i Ui 4 4

CLI I I

co" op 0 0I

@0~~ 0 + 04
of I- 0-

o r inn -
.j II I

a:w F L ' i -

o I 0bx

LL-J

.0 00

0 \

13I

13Q

I~O I I I0I
t- W U) 4 II~ 0 W Efl "~ -



w 01

W Z 0

0a w - >

(L +

ILJ hi
J _0 0)

4U1

w _j 0

-J 
0J

0 v 0 -

0x oii oz

hi hij 0

00 m0 .c 
r

_~j >-~ ~ 0-z>

00 X +. Ul

IX~w 0.-
OD x U

1 0 4 0 0 ,

U0 0

iin

0 "

0 x

00 v v 0 N



CI,
*0 >

U NI 0
6 ) CD

Ip.~3 ' -<
~ I

Zl
I Q -

w

0. a.
X

) w
0 U0

CD-

0

LiLi

a:a

0-o

zz z
ws- a

U. 0O Ii

(n (

5-W- 5- 5

5-o cU (A 0

1 0 C

0 _ 0 z
z 2*

w a i

uja: Lu a:

00 w'a

or ~ 0 0

ir cr

____ ___ ____ ___ ___ ____ ___ ____ ___ S



BIBLIOGRAPHY

Allen, F. J., 1955, "An Elastic-Plastic Theory of the Response of Cantilevers
to Air Blast Loading", BRL Memorandum Report 886, April.

Alverson, R. C., 1956, "Impact with Finite Acceleration Time of Elastic and
Elastic-Plastic Beams", J. Appl. Mechanics Vol. 23, pp. 411-415.

Alverson, R. C., 1958, "Numerical Solutions for Elastic-Plastic Beams by
Method of Characteristics", Tech. Rept. 46, Prown University to
Office of Naval Research, December.

Aspden, R. J., 1963, "The Effect of Rate of Strain on the Plastic Bending of
Beams", Thesis for D. Phil., Oxford University, Engineering
Laboratory, December.

Aspden, R. J., and J. D. Campbell, 1966, "The Effect of Loading Rate on the
Elasto-Plastic Flexure of Steel Beams", Proc. Roy. Soc. A. Vol. 290,
pp. 266-285.

Baron, H. G., 1956, "The Stress-Strain Curves of Some Metals and Alloys at
Low Temperatures and High Rates of Strain", J. Iron and Steel
Institute, Vol. 182, p. 354.

Baron, M. L., and H. H. Bleich, and P. Weidlinger, 1961, "Dynamic Elastic-
Plastic Analysis of Structures", J. Engr. Mech. Div., ASCE, EM-l,
February.

Bell, J. F., and Albert Stein, 1962, "The Incremental Loading Wave in the
Pre-Stressed Plastic Field", Jour. de Meicanique Vol. 1, No. 4,
pp. 395-412, _ecember.

Bell. J. F., 1963, "Sirgle Temperature-Dependent, Stress-Strain Law for the
Dynamic Defomation of Annealed Face-Centered Cubic Metals", J.
Appl. Physics, Vol. 34, No. 1, pp. 134-141.

Bell, J. F., 1966, "An Experimental Diffraction Grating Study of the Quasi-
Static Hypothesis of the Split Hopkinbon Bar Experiment", Jour.

4 Mech. Phys. Solids, Vol. 14, pp. 309-328.

Belsheim, R. 0., 1954, "Delayed-Yield Time Effect in Mild Steel Under
Oscillatory Axial Loads", Naval Research Laboratory, Report No.
4312, March.

Bleich, H. H., and M. G. Salvadozi, 1955, "Impulsive Motion of Elasto-Plastic
Beams", ASCE, Vol. 120, pp.499-520.

Bleich, H. H., 1956, "Response of Elastoplastic Structures tc Transient Loads",
New York Academy of Sciences, pp. 135-143.

Bodner, S. R., and P. S. Symonds, 1950, "Plastic Deformations in Impact and
Impulsive Loading of Beams-', pp. 488-500. "Plasticity" Proc. 2nd
Symposium on Naval Structural Mech., E. H. Lee and P. S. Symonds, Eds.
Perramon Press, Ox~ord and Nnw York.

Bodner, S. R. and F. S. £Frmonds, 1962, "'hnorirental and Thooretical Tnvestigation
Af tile Plastic befom~tion o: Cantilever Pcarm nuhject.qi to Tmnulsfve

Loading", 7our. Apnl. "ech,., "'ol. 2, !!o. 4, DT. 719-727.

i



'Ui,

I

.odner, S. R. and W. G. SpeirL, 1963, "Dynamic P.]asticity Experiments on

Aluminum Cantilever beams at Elevated Temperaturc", J. Mech. Phys,

Solids, Vol, 11, pp. 65-77.

Bodner, S. R. and 0. S. ]lumphrevs, 1964, "Determination of the Rate Dependence
of the Yield Stress from Impulse Testing of Beamsn", Bulletin No. 33,

Shock Vibrations and Associated Environments, op. 141-147.

Bodner, S. R., 1967, "Deformation of Rate Sensitive Structures under Impulsive

Loading", Rep. MMI, No. 7, Technion-Israel Institue of Technology,
Faculty of Mech. Engr., Material Mech. Laboratory.

Boussinesq, M. J., 1885, "Application des Potentiels a l'Etude de l'Equilibre
et du mouvement des Solides Elastiques", Gauthier-Villars, Paris, p. 444.

brown, A. F. C. and N. D. G. Vincent, 1941, "The Relationship Fetween Stress and
Strain in the Tensile Impact Test", Proc. Inst. Mech. Engrs., London,
Vol. 145, pp. 126-13L4.

Campbell, J. D. and <. J. Marsh, 1962, "The Effect of Grain Size on the Delayed
Yielding of Mild Steel", Phil. Mag. Vol. 7, pp. 933-952.

Clark, D. S. and P. Duwez, 1950, "The Influence of Strain Rate on Some Tensile
Properties of Steel;, Proc.ASTN, Vol. 50, pp. 560-575.

Clark, D. S. and D. S. Wood, 1949, "The Time Delay for the Initiation of Plastic
Deformation at Rapidly Applied Constant Stress", Proc. Amer. Soc.
Testing Materials, Vol. 49, p. 717.

Conroy, M. F., 1952, "Plastic-Ripid Analysis of Lonp Beams Under Transverse Im-
pact Loading", J. Appl. Mech., Vol. 19, INo. 4, pp. 465-470.

Conroy, M. F., 1956, "Plastic Deformation of Semi-lnfinite Beams due to Transverse
Impact", J. Appl. Mech., Vol. 23, pp. 239-243.

Costello, L. de L., 1957, "Yield Strennth of Steel at an Extremely Hiph Rate", Proc.
Conf. on Properties of Materials at Iliph Fates of Strain, London, p. 13-21.
Publ. Inst. of "ech. L:nrrs.

Cowper, G. X. and P. S. Symonds, 1957, "Strain-Hardening and Strain-Rate Effects in
the Impact Loading of Cantilever Beams", lech. Rep. 28, Off. of Naval
Research, Contract Nonr-562(10), Nr-065-406.

Drucker, D. C., 1956, "The Lffect of Shear on the Plastic Bending of Beams", j.
Appl. Mech., Vol. 23, pp. 509-514.

Duwez, P. L., D. S. Clark, D. S. Wood, and h. F. hohnenolust, 1942, "behavior of
Long Beams Under Impact Loading", NDRC Armor & Ord. Rept A-21b, OSRu 1828.

iuwez, P. E., D. S. Clark, and Hf. F. Bohnenblust, 1950, "The Behavior of Long
Beams Under Impact Loading", J. Appl. Mech., Vol. 17, pp. 27-34.

Evans, R. H., 1942, "Effect of Rate of Loading on the Mechanical Properties of
Some Materials", 3. Instn. Civil. Engrs., Vol. 18, p. 296.

Ezra, A. A., 1958,"Ihe Plastic Response of a Simply Supported Beam to an Impact
Load at the Center", Proc. 3rd U.S. Natl. Cong Appl. Mech., ASME, N. Y.
pp. 513-520.



I
Florence, A. L. and R. D. Firth, 1965, "Rigpi-Plastic Beams Under Unitormly

Distributed Impulses", J. Appl. Mech., Vol. 32, pp. 481-488.

Fox, F. N., 1947, "A Review of Underwater Explosion Phenomena", Under-water Explo-
sion Research, Vol. 1, "The qhock Wave", pp. 1- 83, Off. of N.--aval Res.,
Dept. of the Navy.

Gillis, P. P. and S, Lerner, 1960, "Plastic Deformation of Cantilever Beams
Under Impact--Some Experimental Results", Tech, Rep. Brown Univ. to
Natl. Science Foundation, Res, Grant No. 8188, Rep. NSF-29188/5.

Goldsmith, W., 1960, "Impart--The Theory and Physical Behavior of Collidirrg
Solids", Edw. Arnold, Publishers, London.

Green, D. S., 195+, "The Effect of Acceleration Time on Plastic Deformation of
Beams 'Under Transverse Imact Loading", Tech. Rep. NRL-OtLt-32 from
Brown Univ. to Off. of Naval Res.

Green , S. J., C. J3. Maiden and S. G. BabcocK, 1956, "Tensile and Compressive StralQ
Tesýts on Aluminum and Aluminum Alloys from r~ates of 10 In/In/Sec to IL)
In/In/Sec", Proc. U.S. Nati. Cong. Appl. Mech., p. 5b!6, ASML, N. Y.

Hall, W. J. and N. M. Newmark, 1955, 'Shear beflection de Flange Steel Beams
in the Plastic Range", Proc. ASCE, Engr. Mech. ., Paper 814, Vol. 81
pp. 814-i - 81>-30.

Harding, J., L. 0. Wood, and J, D. Campbell, 1960, "Tensile Testinp of >bterialsat
Impact Rates of Strain", J. Mech. Enp-rg. Science, Vol. 2, pp. Md-9b.

Hauser, F. E., J. A. Simmons, and J. E. Dorn, 1961, "Strain Rate Effects in Plastic
Wave Prnpagation", Response of Metals to High Velocity Deformation, P. G.
Shewmon & V. F. Zacka.', Eds., Interscience Publrs, N.Y., pp. 93-110.

Hoge, K. G., 1965, "The Influence of Strain Rate on Mechanical Properties of 6061-T6
Aluminum Under Uniaxial and Biaxial States of Stress", Presented at 2nd
intern. Cong on Experimental Mechanics, Washington, D. C.

Hopkinson, B., 1904, "The Effects of Momentary Stresses in Metals, Proc. Roy. Soc.,
London, Vol. 74, p. 498.

Johnson, P. C., B. A. Stein, and iK. S. Davis, 1963, "M4easurement of Dynamic Plastic
Flow Properties Under Uniform Stress". ASTH Special Technical Publication
No. 336, (Materials Science Series-5 ),Philadelphia, vp. 195-207.

Jones, P. G. and h. '. Moore, 194+0, "An Investigation of the Effect of Rate of Strain
on the Results of Tension TestL of Metals", Proc. ASTM, Vol. 40, p. 610.

Karnes, C. H. and L. A. Ripperger, 1966, "Strain Rate Effects in Cold Worked High-
Purity Aluminum", J. Mech. Phys. Solids, Vol. 14, pp. 75-88.

Karunes, B. and L. T. Onat, 1960, "On the Effect of Shear on Plastic Deformation of
Beams Under Transverse Impact Loading", J. Appl. Mech. Vol. 27, p. 107.

Keil, A. If., 1960, "Problems of Plasticity in Naval Structures: Explosive and
Impact Loading", Proc. of 2nd Symposium on Naval Struc. Mech., Eds:

4 E. H. Lee & P. S. Symonds, Pergamon Press, 14. Y.'I



Nolsky, H., 1966, "Lxperimental Stress Wave Propagation", Cong. Survey Lecture,
Proc. bth U. S. Nati. Cong. Appl. Mech., AS.ML, N. Y.

Kralft, J. M., and A. M. Sullivan, 1959, "Effect of Grain Size and Carbon Content
on the YieldDelay-Time of Mild Steel", Trans. Am. Soc. Metals, Vol. !1,
pp. 643-659.

Lee, L. It. and P. S. Symonds, 1952, "Large Plastic Deformations of Be'ams Under Trans-
verse Impact", J. Appl. Mech., Vol. 19, pp. 308-314.

Lee, L. H. and S. J. Tupper, 195 4 , "Analysis of Plastic Deformation in a Steel
Cylinder Striking a Rigid Target", J. Appl. Mech., Vol. 21, pp. 63-70.

Lindholm, U. S., 1965, "Dynamic Deformation of Metals", Proc. of Colloq. Behavior
of Materials Under Dynamic Loading, (14. J. Huffington, Jr. Ed.) ASMIr,
pp. 42-61, P. Y.

Malvern, L. L., 1965, "Experimental Studies of Strain-Rate Effects and Plastic Wave
Propagation in Annealed Aluminum", Proc. Colloq. behavior of Materials
Under Dynamic Loa,'ing, pp. 81-92, AStME1, N. Y.

Manjoine, MI. J., 19 4, "Influence of 1%ate of Strain and Temperature on Yield Stresses
of Mild Steel", J. Appl. tNech., Vol. 11, A-211 - A-218.

Marsh, K. J. and J. D. Campbell, l963, "The Lffect of Strain Rate on the Post-Yield
Flow of Nild Steel:, J. Mech. Phys. Solids, Vol. 11, pp. 49-63

Martin, J. B., 1964, "Impulsive Loading Theorem for iPlastic Continua", roc.
Lng. IMech. Div., ASCL, Vol. 90 (LENS), p. 27-42.

Martin, J. b., 1965, "A Displacement Bound Principle for Inelastic Continua Subjected
to Certain Classes of Dynamic Loading", J. App]. Mech., Vol. 32, pp. 1-6.

Martin, J. B., 1966, "The Determination of Upper Bounds on Displacements Resulting
from Static and Dynamic Loading by the Application of Energ7y Methods", Proc.
5th U.S. Natl. Cong. Appl. Mech., ASHE, N. Y., pp. 221-236.

Martin, J. B. and P. S. Symonds, 1966, "Mode Approximations for Imnulsively Loaded
Rigid-Plastic Structures", Proc. ASCE, J. E:ngr. Mech. Div., Vol. 92, pp. 4 3 -CC

Massard, J. M. and R. A. Collins, 1958, "The Engineering7, Behavior of Structural Metals
Under blow and Rapid Loading", U. of Illinois, Civil Engr. Studies, Struc-
tural Res. Series No. 161, Tech. Rep to Off. Naval Res., Contract
Nonr 1834(01).

Mentel, T. J., 1958, "The Plastic Deformation due to Impact of a Cantilever Beam
with an Attached Tip Mass", J. Appl. Mech., Vol. 25, n. 515.

Nadai, A. and J. J. Manjoiiie, !9'40, "Hjigh Speed Tension Tests at Llevated Temperatures"
Pt. I, Proc. ASTM, Vol. 40, pp. 822-839.

Nadai, A. and M. J. Manjoine, 1941, "High Speed Tension Tests at Elevated Temperatures"
Pts. II and 111, J. Appl. Mech., Transactions ASML, Vol. 63, pp. A77-A91.



r

Newmark, N. M., 1959, "A Method of Computation for Structural Dynamics',
Proc. ASCE, Engrg. Mech. Div., Vol, 85, No. EM 3, Part 1,

pp. 6.7-94.

Neal, B. G., 1961a,"Effect of Shear Force on the Fully Plastic Moment of
an I--Beam", Jour. Mtch. Engrg. Science, Voj. 3, No. 3, pp. 258-266.

Neal, B. G., 1961b,"The Effect of Shear and Normal Forces on the Fully
Plastic Moment of a Beam of Rectangular Cross Section", J. Appl.
Mechanics, Vol. 28, pp. 269-274,

Nonaka, T., 1964, "Some Interaction Effects in a Problem of Plastic Beam
Dynamics", Tech. Rept., Brown University. (Div. of Engineering)
to Natl. Sci. Foundation, Report No.NSF C72115118.

Nonaka, T., and P. S. Symonds, 1967, "Effects of Shear on a Rigid-Plastic
Beam under Blast-Type Loading", In preparation as report from
Brown University (Div. of Engineering) to National Science
Foundation, Grant NSF GK 1013.

Parkes, E. W., 1955, "The Permanent Deformation of a Cantilever Struck
Transversely at its Tip", Proc. Roy. Soc., A, Vol. 228, pp. 462-476.

Parkes, E. W.,1956, "Some Simple Experiments on the Dynamic Plastic Behavior
of Mild-Steel Beams", British Welding Journal, Vol. 3, pp. 362-366.

Parkes, E. W., 1958, "The Permanent Deformation of an Encastrg Beam Struck
Transversely at any Point in its Span", Froc. of the Institution
of Civil Engineers. Vol. 110: July, pp. 277-304.

Perrone, N., 1965, "On a Simplified Method for Solving Impulsively Loaded
Structures of Rate-Sensitive Materials", J. Appl. Mech., Vol. 32,
Series E, No. 3, Sept. pp. 489-492.

Ripperger L. A., and J. W. Turnbow, 1959, "Strain-Rate Effects on Stress-
Strain Characteristics of Aluminum and Copper", Proc. 4th Midwestern
"Conf. on Solid Mech., Univ. of Texas, Austin, pp. 415-440.

Salvadori, M. G., and P. Weidlinger, 1957, "On the Dynamic Strength of

Rigid-Plastic Beams under Blast Loads", Proc. Amer. Soc. Civil
Engrs, Vol. 83, EM 4, (J. Engrg. Mech) Paper 1389, pp. 35.

Seiler, J. A., 1954, "On Llastic-Plastic Deformation in Beams Under- Dynamic Loading"
Report All-109, Contract 1N7onr - 35801,Brown University to ONR.

Seiler, J. A., B. A. Cotter, and P. S. Symonds, 1956, "Impulsive Loading
of Elastic-Plastic Beams", J. Appl. Mech., Vol. 23, pp. 515-521.

Smith, R. C., T. E. Pardue, and I. Vigness, 1956 , "The Mechanical Properties
of Certain Steels as Indicated by Axial Dynamic Load Tests",
Proc. Soc. Exp. Stress Anal. Vol. 13, No. 2, pp. 183.

Stallybrass, M. P., 1960, "The Elastic-Plastic Deformation of a Cantilever
Beam Due to Transverse Impact Loading", M. Sc. Thesis to Brown
University.



Steidel, R. F. Jr. and C. L. Makerov, 1960, "The Tensile Properties of Some Engi-
Engineering Materials at Mod -ate Rates of Strain", ASTM Bulletin,
pp. 57-64 (TP123-TP130).

Symonds, F. S., 1954, "Large Plastic Deformations of Beams Under Blast Type Loadinc,";
Proc. 2nd U.S. Natl. Cong. Appl. Mech., p. 505.

Symonds, P. S. and C. F. A. Leth, 1954, "Impact of Finite Beams of Ductile Metal",
J. Mech. Phys. Solids, Vol. 2, pp. 92-102.

Symonds, 1'. S., 1955, "Simple Solutions of Impulsive Loading and Impact Problems of
Plastic Beams and Plates", Tech. kup. Ic. 3, Prown Univ. to Norfolk Naval
Shipyard, Underwater Exolosions Res. Div.

Symonds, P. S. and T. J. tlentel, 1958, "Impulsive Loading of Plastic Beams with
Axial Constraints", J. Mech. Phys. Solids, Vol. 6, pp. 186-202.

Symonds, P. S., 1965, "Viscoplastic Behavior in Response of Structures to Dynamic
Loading", Proc. of Colloq. on behavior of Materials Under Dynamic Loading,
pp. 106-129, (N. J. Huffington, Jr. Ld.) ASME, N.Y.

Taylor, D. B. C. and A. Z. Tadros, 1956, "Tension and Torsion Properties of Some
Metals Under Repeated Dynamic Load (impact)", Proc. Inst. Mech. Engrs.
(London),Vol. 170, pp. 1039-1051.

Taylor, G. I., 1948, "The Use of Flat Ended Projectiles for Determining Dynamic
Yield--Part I--Theoretical Considerations", Proc. Roy. Soc. London,
Vol. 194, Ser. A, p. 289.

Thomson, W. T., 1954, "Impulse Response of Beams in the Elastic and Plastic Regions",
J. Appl. Mech., Vol. 21, pp. 271-278.

'Ting, T. C. T. and P. S. Symonds, 1962, "Impact of a Cantilever Beam with Strain Rate
Sensitivity", Proc. 4th U.S. Natl. Cong. Appl. Nech., ALtF, NY, p. 1153-1165.

Ting, T. C. T., 1963, "On the Solution of a Non-Linear Parabolic Equation with a
Floating Boundary Arising in a Problem of Plastic Impact of a Beam", Q. of
Appl. Math., Vol. XXI, pp. 133-150.

Ting, T. C. T., 1964, "The Plastic Deformation of a Cantilever Beam with Strain Rate
Sensitivity Under Impulsive Loading", J. Appl. Mech., Vol. 31, p. 38-42.

Vigness, I., J. M. Krafft, and ?. C. Smith, 1957, "Effect of Loading History Upon the
Yield Strength of a Plain Carbon Steel", Proc. Conf. on Properties of Mate-
rials at High Rates of Strain, London, Publ. Instn. of ilech. Engrs, p.138-146.

Whiffin, A. C., 1948, "The Use of Flat-Ended Projectiles for Determining Dynamic Yield
Stress-Il-Tests on Various Metallic Materials," Proc. Roy. Soc. Ser. A,
Vol. 194. pp. 300-322.

Witmer, 11. A., H. A. Dalmer, J. W. Leech, and T. H. H. Plan, 1963, "Larze Dynamic De-
formations of Beams, Rings, Plates, and Shells", AIAA J.,Vol 1, p.1848-1857.

Witmer, E. A., E. N. Clark, and H1. A. Balmer, 1967, "Experimental and Theoretical
Studies of Explosive-Induced Large Dynamic and Permanent Deformations of
Simple Structures", Exper. Mech., Vcl 7, p. 56-66.

I tii
S. . .t i



_________s____ie

"DOCUMENT CONTROL DATA- R & D

I -. 1., 'I1 1( I I C,, lr,,,,l,.rh ) "'' I I l A"I - I ,

Brown University, Engineering Div~sion Unclassified

Providence. Rhode IslandI

Hl N "IL
SURVEY OF METHODS OF ANALYSIS FOR PLASTIC DEFORMATION OF STRUCTURES UNDER DYNAMIC
WOADING

4 DE SCliPI PFVI NO $T E (7-'pe of l -re .- )'d l -RI'a . dat )

Final Technical Report
S AU THORISI fl-'ir, 0onM , Middle ini(- il. IAst tflree)

P. S. Symonds

C REPORT DAIE "iTOA O O.F.. OFA.. 710 NO OF IF FS

June 30, 1967 __254 95
da. CON •RACT OR GRAN T NO 4- ORIGINA I 'QR-5 fill ORI NUNItI rSi I5

Nonr 3248 (01) (x) I
b. PROJECT NO BU/NSRDC 1-67

th- repofTO

d. •

10. OISTRIBUTION STATEMEF.NT

Distribution of this document is unlimited.

/4
11. SUPPLIEF.INTARV NOIFLS 1.' SV. NSCW1WG k.>LIIARY ACTIVIT'

Naval Ship Research & Development Center

Washington, D.C. 20007

13 A55TRACT I

:/L Survey provides a critical st'ady of methods for the analysis of metal

structures under dynamic loads leading to large plastic deformation. Relevant i
material behavior and analytical and numerical methods are summarized. Emphasis

is put on critical study of experiments, particularly on beams, with consideration

of strain rate sensitive plastic behavior.

DD 1 Nov 1473 Unclassified
S/N 010 1-807-6801 Security CldssifL(ation



IL k x~iw (Mcanc0 L 110
17 Inet

a ., c I" Illar and recd an1u1ai 1'

NI j 'l I ,II'
Iy I s

I i

IDýo 147P rI , t I - f i t n


